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Problems 

 The global/local minimum of this functional is the empty set   -> L(u) = 0 

 Our gradient descent approach implicitly excluded it as a possible solution by just stopping to the 
first local minimum, but 



The Balloon Term 

 It measures the area inside the curve u (integral over all the internal points of u) 
 

                  penalizes big areas (force it too be small),                   penalizes small areas (force it too be 
big and also non-null) 

Balloon term 

 It is an integral over the interior points: Euler-Lagrange equation is not applicable 



The Balloon Term 
The Green’s Theorem  (on the Cartesian plane) 

Vector field 

The curl of a vector field is a scalar field 



The Balloon Term 
The Green’s Theorem  (on the Cartesian plane) 

Vector field 

Oriented integration on an oriented curve 
(counterclockwise) 



The Balloon Term 
The Green’s Theorem  (on the Cartesian plane) 



The Balloon Term 

Euler-Lagrange can be applied on this 
functional 
 
Magically it will result in a force pushing the 
contour in/our along its normal 

Green’s Theorem 



Curve Fitting 
 In:      Set of points 

 
 Out:   Find a smooth curve passing as close as possible to  

           the points 

The minimum distance between p and 
the point set 
 
(it is a distance map in 2D) 



3D Surface Reconstruction 

Input images  3D Surface 

s 

t 



3D Surface Reconstruction 

Shape from Silhouette 
(visual hull) 

 Surface 
 do not capture 

convexities 

Input images  



3D Surface Reconstruction 

Shape from Silhouette 
(visual hull) 

Pairwise or Multi-view  
Stereo Matching 

 Surface 
 do not capture 

convexities 

 Point cloud 
 capture 

convexities 

How do we fuse together the 
results of these two methods? 

Input images  



1st Approach 

 Initial solution  =  
 

 Optimize locally 

Penalizes surfaces far 
from the point cloud 

Membrane Energy 
penalizes non uniformly 
parameterized surfaces 

Thin Plate Energy 
penalizes non smooth surfaces 

Visual Hull 

 Equal to the “total curvature” 
 

 
iff the parameterization is uniform 



Another Functional 

 Given  

 The gradient in this case is 

s 

t 

 Boundary conditions? 



Mixed Boundary Conditions 

Dirichlet boundary condition 

Dirichlet boundary condition 

(no name) boundary  
condition 



3D Surface Reconstruction 

? 



3D Surface Reconstruction 

Laplace operator 

Bi-Laplace  operator 
(Biharmonic operator) 

Gradient operator 

Discretizations: 

? 



3D Surface Reconstruction 

Laplace operator 

Bi-Laplace  operator 
(Biharmonic operator) 

Gradient operator 

Discretizations: 



Observation 

Mesh smoothing 
(filter the mesh using a gaussian filter) 
[Taubin 95] 

 One step corresponds to a Gaussian filter 
pass (spectral analysis) 
 

 The global minima is the empty set 



Observation 

Balloon term 
(volume preserving term) 
[Taubin 95] -> Inflate term 

 The global minima is a sphere with a similar volume 



3D Surface Reconstruction 

Input images  

Optimization 

 The local minima is a smooth surface close to the point cloud (computed by the 
stereo matching algorithm) 

 If the visual hull is used to initialize the minimization, the resulting surface is also 
close to it 



3D Surface Reconstruction 

Input images  

Optimization 



Generalization 

Input images  

Information 
type 1 

Information 
type 2 

Information 
type 3 

Information 
fusion 



Images 

An image can be viewed as a function 
 

 
 
 
 n=2:    Image 
 n=3:    Video      (or a volumetric representation of a scene) 
 n=4:    Volumetric representation of a scene + time 

 
 d=1:    Brightness images/videos (or density volumes) 
 d=3:    Color images/videos/volumes 
 d>1:    Multispectral images/videos/volumes 



Images 

An image can be viewed as a function 
 

RGB cube 



Image De-convolution (De-blurring) 

 Image De-convolution: Given an image     and a kernel      , we aim at recovering the image      such 
                                           that  

 In a Variational framework, both     and     are modeled as continuous functions to the a color space 

RGB or YCbCr/YUV  
(channels are de-correlated) 



Image De-convolution (De-blurring) 

 find      such that  

Generative approach to the problem 
(problem solving paradigm) 



Generative Approach 

I O Formal definition of a problem 
 
           = problem instance 
           = solution of the problem instance  

 is typically difficult to compute 

Generative approach to the problem 

 L is a loss functional evaluating two input 
elements (e.g. a distance) 



Generative Approach 

I O Formal definition of a problem 
 
           = problem instance 
           = solution of the problem instance  

 Example: 

O = orientation angle  
       of the square 

I =  

Image 

* 

 is typically difficult to compute 



Generative Approach: Image De-blurring 

Generative approach to the problem 

blurred un-blurred 

very easy to compute 

 test (all) the u 
 convolve them with A 
 evaluate a cost functional with the original f 



Generative Approach: Image De-blurring 

Generative approach to the problem 

blurred un-blurred 

very easy to compute 

 What does the choice of the loss functional 
corresponds to? 

 Is there any meaning? 
 Can we choose any arbitrary functional?  



Generative Approach seen as a MAP or ML 

Maximum a posteriori estimator 
(the desired o is the one with maximum  
 probability assuming the input i) 

I O 

Likelihood 
(loss functional L) 

Prior on o 
(additional information about our output) 

* 

Maximum Likelihood 
(the desired o is the one which generates 
 the observed input i with the maximum probability, 
 i.e., which is likely to generate i.) 

uniform 



Image De-convolution (De-blurring) 

Generative approach to the problem 
(the two quantities should be equal up to 
 Gaussian noise) 

norm L2 

* 

* 

these two  objects has to be close 

* 



Image De-convolution (De-blurring) 

Prior on * 



Image De-convolution (De-blurring) 

* Prior on 

L1 Prior + L2 “linear” cost  = Lasso problem 

Sparse gradient 



Natural images and Sparsity 

0 Natural images 



Lasso Problem 

Tibshirani, R., "Regression shrinkage and selection 
via the lasso". 1996 
Journal of the Royal Statistical Society 
(useful in Compressed Sensing) 

is linear and orthonormal Solution will be sparse 



Lasso Problem 

Tibshirani, R., "Regression shrinkage and selection 
via the lasso". 1996 
Journal of the Royal Statistical Society 
(useful in Compressed Sensing) 

is linear Solution will typically be sparse 

The further one goes from the 
linearity and ortho-normality 
of  

The more the sparse property will 
disappear 



Infinite Dimensional Case 

Proof: 

is linear and orthonormal 
will be sparse 

Gradient theorem 



Infinite Dimensional Case 

Proof: 

is linear and orthonormal 
will be sparse 

select     in such a 
way  
(maybe in a restricted 
 domain of     ) 

Linear operator   (orthonormal?????) 

Combination of linear operators is linear 
C.V.D. 

Does it work in infinite dimensional 
case??? 



Image De-convolution (De-blurring) 

Lasso problem 

Total Variation (TV) 

TV-L2       = L2 cost + Total Variation 

Convolution is a 
linear operator 



Image De-convolution (De-blurring) 

Not derivable in 0          it is not  

0 



Image De-convolution (De-blurring) 

Norm-1 (  ):           approximation 

Gradient of our functional 
(only if the kernel A is symmetric) 

0 



Image De-convolution (De-blurring) 



Image De-noising 

Generative approach to the problem 
 
L2 + L1  =  Lasso  problem  
L2 + TV  = TV-L2  problem 

L1 + TV  = TV-L1  problem    (No lasso) 

* 



Video Super-Resolution 

 Why it works?  a sequence of n images provides n observations of a point  
                            in the scene: sometimes in the center, sometimes ¼ of a pixel on the  
                            right, sometimes on the left, top, down etc… 

 We just need to fuse all these information together. 

sequence of images 
(of the same scene with the  
  camera translating a bit) 

super resolution result 
(aerial image of a building) 

 Secondary objectives: - Eliminate sensor noise from the video (thermal noise or 
                                           spikes (video restoration)) 
                                         - Eliminate not wanted occlusions  



Video Super-Resolution 
 Video Super-Resolution: given a sequence of images       representing the same 

                                             image        translated by         and down-sampled,  
                                             find the original image  

Original image (our unknown) 

     translated by 
(sub-pixel accuracy needed) 

Down-Sampling   
(modeled as convolution with a sinc kernel, 
 i.e., a low pass filter) 

Generative approach 



Video Super-Resolution 
 Video Super-Resolution: given a sequence of images       representing the same 

                                             image        translated by         and down-sampled,  
                                             find the original image  

Original image (our unknown) 

     translated by 
(sub-pixel accuracy needed) 

Down-Sampling   
(modeled as convolution with a sinc kernel, 
 i.e., a low pass filter) 

Generative approach 



Video Super-Resolution 

L1 Prior + L2 cost = Lasso 
 
 
Solution is piecewise smooth 

Sum of L2-Norm is still a 2-type-Norm 

The two quantities should be equal 
up to a Gaussian noise 



Video Super-Resolution 

L1 Prior + L1 cost = Lasso 
 
(not guarrantee to have piecewise smooth  
 solutions but it behaves similarly due to  
the median theorem (see later) 

Sum of L1-Norm is a 1-type-Norm 

The two quantities should be equal 
up to a Gaussian noise with spikes 
 
More robust to burst noise/spikes/outliers 

What about an L1 cost, instead? 



Why? 

When you have multiple information regarding a single unknown 
 
The result of the minimization depends on the norm 



The p-type-Norm Minimizations 

Mean 
(influenced by outliers) 

Median 
(robust by outliers) 

Mode 
(insensitive to outliers) 

Mean 

Median 

Mode 

Distribution of the observations 

Outliers 

Not differentiable, difficult to optimize 



The p-type-Norm Minimizations 

Mean 
(influenced by outliers) 

Median 
(robust by outliers) 

Mode 
(insensitive to outliers) 

Mean 

Median 

Mode 

Outliers 

Not a norm, difficult to optimize 

Distribution of the observations 



Conclusions: in general… 
 if one has multiple information regarding an unknown,  

how does he fuse them together? 

Mean 
(influenced by outliers) 

Median 
(robust by outliers) 

Mode 
(insensitive to outliers) 

Outliers 

 so.. the best way is to sum them together and minimize a functional 

Does the used norm matter? 
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