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Last Lecture 
 If we have a topological vector space      with an inner product 
 and functionals of type                        sufficiently regular  

 
 it is possible to define an object called directional derivative 

 
 
 
 

 But when this exists for all possible directions, and there exist a function 
 
such that 
 
 

 then this function is called gradient                                                  (and it exists very rarely) 

(that not always exists) 



Last Lecture 

 If the directional derivative for L exists for all points and directions  in  
then the set of stationary point is defined as 
 
 
 
 
 

 If the gradient for L exists for all points in       then this set can be equivalently defined 
as 

The set of points in A 
where small variations in A 
coincide with zero variations 
in L 



The Space  

 Given 
 

    such that  

* 

 Therefore for any functional of type 
 
 

    the directional derivative and gradient can be defined (when they exist). 



 the directional derivative 
 
 
 
 
 
 

    where 

The functional  

(Gâteaux derivative) 

 and the gradient is defined is that object of type 
     that satisfies this relationship (if it exists) 



 Given  

A simple Loss Functional 

a b 

u(x) 

x 

 or shortly: 

In some situations, this  
second term is zero. 

 The directional derivative: 

* 



A simple Loss Functional 

Directional derivative 

Gradient 

     is a stationary point/function for       if and only if  

Euler-Lagrange equation 
(necessary condition for optimality,  
not in general sufficient) 

has to be equal to the null function!! 

* 

* 

 In these situations the gradient of L exists  (sufficient and necessary condition for its existence) 

(PDE) 



Boundary Conditions 
 Sufficient and necessary condition for the gradient to exists is that the second term of the 

directional derivative is zero 

Dirichlet boundary condition 

 If the problem to minimize has a constraint of type 

 it is logical to consider only variations/directions       which maintain the extremes of the curve 

a b x 



Boundary Conditions 

Dirichlet boundary condition 

Von Neumann boundary condition 

does not depend on x 

(no name) boundary condition 
(but it is the most useful) 

* 



Application Example: Sky-Line detection 

Input Segmented image x 

u(x) 

it penalizes curves passing through 
non-edge pixels 

Edge Map 
(it is an image) 



Application Example: Sky-Line detection 

Input Segmented image x 

u(x) 

Snakes model, or Active Contour Model 
[Kass, Witkin, Terzopoulos IJCV’88] 

it penalizes curves passing through 
non-edge pixels 

it penalizes curves which are 
non-smooth 



Application Example: Sky-Line detection 
 To solve this problem, first compute the edge map  

 

 then solve the following minimization problem 

 compute the Euler-Lagrange Equation 

 This is still a PDE, but the solution is not obvious,  
since we do not  have a close formula for  
 

 But, we can always resort to a gradient descent approach. 

* 



Gradient Descent 
 First we need to add a time dimension to our problem 

 We know that the solution of our problem is              (if it converges) 

 Solve the dynamical system 



 Let fix an     ,                       represents the y-position of a particle (the particle     ) evolving over time. 
(something falling down) 
 
 

 This particle starts from                  at time 
 
 

 It then falls down in the image with speed                                   

Gradient Descent 



Gradient Descent 
 The speed of this particle 

 These two terms can be thought as 

depends by the edge map E and by the second 
derivative of the curve in  

External force on       +    Internal force on  



Numerical Implementation 
 The curve                   needs to be discretized in space and time 

      is a constant guiding the convergence of the dynamical system: a too high      makes the system 
unstable; a too small      makes the convergence too slow. From the Finite Element theory, the 
choice      depends (also) on the used spatial parameterization/sampling                            . 
 

      can be computed in each step using the line search algorithm    
(no more a curve evolving but a pure optimization technique) 

time discretization space discretization 

* 



Numerical Implementation 
 The curve                   needs to be discretized in space and time 

 
 for a sufficiently high    ,                    will lie on a local minima of L 

time discretization space discretization 



 To compute the external force for a point in the curve (i.e. a particle), we just need to evaluate a 
point in the function (floating point image) 
 
 
 

 this function/image can be pre-computed before running the optimization (e.g. using Sobel filters).  
 

 Btw, better smooth I before otherwise        is full of Dirac deltas (which are useless for a continuous 
evolution) 
 

 the evaluation is independent for each particle (to estimate the external force of one particle, we 
do not need to know the state of the other particles) 

 therefore, this operation is parallelizable 

Gradient Evaluation 

external force 

where 



 To compute the internal force for a point in the curve (i.e. a particle), we can approximate the 
second derivative of the curve using finite differences 
 
 
 

 the evaluation is dependent only on the state of neighboring particles  
 

 therefore, this operation is easily parallelizable on a grid (e.g. on GPU) 
 
 

 (Variational approaches are very suitable for GPU implementations) 

Gradient Evaluation 

internal force 



Boundary conditions 
 We need to make sure that the boundary conditions are satisfied 

Dirichlet boundary condition? 

Von Neumann boundary condition? 

No name boundary condition? 

Fix the extremes at the 
starting position: bad 

Fix the steepness of the  
extremes: ok 

Both the extremes has to 
be at the same height: bad 

…. Etc… 



Boundary conditions 
 What if the boundary conditions are not satisfied? 

 So, what will this object be? 

 Will it work the same? 

 Yes, if                   is still a descent direction for L 
(instead of a gradient descent technique we will have a descent technique)   

One has to verify this.. And the verification depends  
from problem to problem… 



Image Segmentation 

 The goal of image segmentation is to partition an image into “meaningful” 
components.  
 

 What is “meaningful” depends on the application. In case of an image representing a 
real scene, one may want that each of the segmented components corresponds to 
different physical objects. 

Input Segmented image 



Image Segmentation 

Typical approaches: 
 

 Edge-based methods: running an edge detector to identify the contours on the 
color or on the texture. Then group the output into connected curves. 

 
 Region-based methods: identify regions in the image for which some criterion 

is more or less uniform (brightness, color, textures,...) (e.g. by thresholding or 
clustering). Then use region growing, region merging, connected components 
etc.. to refine the segmentation. 



Image Segmentation: a Variational Appr. 

 To get these segmentations we need something more than 
a curve of type 

a b x 

a 

b 

s 

possibly closed 

D. Mumford, J. Shah ’89 



Snake Model v2.0 

 The edge map  

a 

b 

s 

Snake 1.0 



Snake Model v2.0 

 The edge map  
 
           in this case does not enforce the curve to be smooth but, instead, it forces the 

parameterization to be smooth. 
 

 if            is discretized, the term                      would penalize non-uniform sampling of the curves 

a 

b 

s 

Snake 1.0 



Snake Model v2.1 

a 

b 

s 



Snake Model v2.1 

 the term                    is equal to the curvature of the curve, in case of uniform parameterization 

a 

b 

s 



Snake Model v2.1 

 the term                    is equal to the curvature of the curve, in case of uniform parameterization 
 
 

 The functional we have now is more complex than the one before 

a 

b 

s 



 Given  

Another Loss Functional #2 

 The directional derivative is in this case 

a 

b 

s 



Another Loss Functional #2: Summary 

Directional derivative 

           Functional 



Another Loss Functional #2: Summary 

Directional derivative 

Gradient 

           Functional 

     is a stationary point/function for       if and only if  

Euler-Lagrange equation 

this is the null function in  



Boundary Conditions 

Dirichlet boundary condition 
(lambda is just noise on the curve u(t) which does not 
affect the extremes u(a) and u(b)) 

does not depend on s 

(no name) boundary condition 

The curve must be close and with continuous 
first derivative at the closure point 



Another Loss Functional #3 

 Given  

 The directional derivative is in this case 

a 

b 

s 



Another Loss Functional #2: Summary 

Directional derivative 

Gradient 

           Functional 

     is a stationary point/function for       if and only if  

Euler-Lagrange equation 



Boundary Conditions 

Dirichlet boundary condition 
(lambda is just noise on the curve u(t) which does not 
affect the extremes u(a) and u(b) and their first 
derivatives) 
 
(bad for our case) 

does not depend on s 

(no name) boundary condition 

The curve must be close and with continuous 
first, second and third derivatives at the closure 
point 

does not depend on s 



Snake Model v2.1 
 Now we can solve for the snake model 

 The gradient is  * 



Snake Model v2.1 

     

does not depend on s 

(no name) boundary condition 

does not depend on s 



Snake Model v2.1 

     

External “force” Internal “force” 

2D vector field in the 
image space 



Snake Model v2.1: Evolution example 

 Robust to noise  
 

       and      shrink the snake till a 
strong edge is found 

 The higher       and      are, the 
stronger has to be the edge 
(these have to be tuned) 



Lack of information 

The result higher depends on the chosen 
prior, i.e. the values of         and       
 
The higher they are, the more robust  
the method is to lack of information 



Outliers 

Outliers 

Again, the result depends on the choice  
of        and       
 
The higher they are, the more robust  
the method is to outliers 



Outliers, Noise, Lack of Information 



Outliers, Noise, Lack of Information 
 Smooth curves make the approach robust to noise, “outliers” (still an L2), and lack of 

information 
 

 Too smooth!! is this what we want?  No more details 
 

      real detail         vs.     outlier/noise                                       (L2 smoothness term) 



Tracking dynamic object 
 Very fast to track dynamic elements, using the previous frame as initialization of the snake 
 with very few iterations it will converge 



Problems 
 It inherits all the problems of a gradient descent technique 

 it converges to a local minima 
 these local minima can densely populate the space of solution 
 especially for high dimensional problems 
 therefore, once we get out from one local minimum it will fall right after into another 

one. 
 convergence can slow down in case of flat areas of the functional            (line search) * 



Problems 
 It inherits all the problems of a gradient descent technique 

 it converges to a local minima 
 these local minima can densely populate the space of solution 
 especially for high dimensional problems 
 therefore, once we get out from one local minimum it will fall right after into another 

one. 
 convergence can slow down in case of flat areas of the functional            (line search) 

 The way the problem is formulated can introduce 
 multiple global minima 
 The term                          introduces a lot of flat areas in the functional (gradient information 

is only local not global) [Resort to descent technique, not gradient] 
       and        have to be decided a priori 
 internal forces tend to shrink the snake into a single point (the higher are these constant 

the higher is this effect) 
 
 

* 



Problems 

 The global/local minimum of this functional is the empty set   -> L(u) = 0 

 Our gradient descent approach implicitly excluded it as a possible solution by just stopping to the 
first local minimum, but 
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