Random Sequences and Permutations

Luca Ballan

Oct/2018

Problem: How many distinct elements are in a random sequence with k elements? What is the average number of distinct permutations of a random sequence with k elements? What is the probability distribution of the multiplicity of each distinct element in a random sequence?

Multiplicity in a Random Sequence

An ordered sequence of k elements is built by randomly selecting k elements from a set of n values with possible repetitions. The probability that this sequence contains k_{1} repetitions of an element, k_{2} repetitions of a different element, \ldots, and k_{s} repetitions of another different element s, such that $\sum k_{i}=k$, is

$$
P\left(\bar{K}=\left(k_{1}, \ldots, k_{s}\right)\right)=\mathbf{C}(n, s)\left(\frac{1}{n}\right)^{k} \frac{k!}{k_{1}!\ldots k_{s}!}
$$

Proof: We first need to select s distinct elements from the pool of n values, $\mathbf{C}(n, s)$. Only these elements will be used to build the sequence. The probability of building a sequence with $\left(k_{1}, \ldots, k_{s}\right)$ distinct elements is

$$
\mathbf{C}(n, s)\left(\frac{1}{n}\right)^{k}
$$

The probability for each sequence is $(1 / n)^{k}$ because there is only one possible sequence that given s distinct elements can be form with a $\left(k_{1}, \ldots, k_{s}\right)$ repetition scheme. By including al the possible permutations of the $\left(k_{1}, \ldots, k_{s}\right)$ distinct elements, the final probability increases to

$$
\mathbf{C}(n, s)\left(\frac{1}{n}\right)^{k} \frac{k!}{k_{1}!\ldots k_{s}!}
$$

Distinct Elements and Average Number of Permutations

An ordered sequence of k elements is built by randomly selecting elements from a set of n values with possible repetitions. The number \bar{S} of distinct elements in the sequence has probability distribution

$$
P(\bar{S}=s)=\sum_{\substack{k_{1}, \ldots, k_{s}>1 \\ \sum k_{i}=k}} P\left(\bar{K}=\left(k_{1}, \ldots, k_{s}\right)\right)
$$

Let $\bar{\Phi}(k, n)$ denotes the number of possible permutations of such a sequence. The average number of $\bar{\Phi}(k, n)$ is

$$
E[\bar{\Phi}(k, n)]=\sum_{s=1}^{k} E[\bar{\Phi}(k, n) \mid \bar{S}=s] P(\bar{S}=s)
$$

where $\bar{\Phi}(k, n) \mid \bar{S}=s$ is the number of possible permutations of a sequence with s distinct elements. Note that, a sequence can have only 1 to k distinct elements.
If the sequence has s distinct elements, the average number of possible permutations of this sequence is

$$
E[\bar{\Phi}(k, n) \mid \bar{S}=s]=\sum_{\substack{k_{1}, \ldots, k_{s}>1 \\ \sum k_{i}=k}} \frac{k!}{k_{1}!\ldots k_{s}!} P\left(\bar{K}=\left(k_{1}, \ldots, k_{s}\right) \mid \bar{S}=s\right)
$$

Proof: The number of permutations of a sequence with a $\left(k_{1}, \ldots, k_{s}\right)$ repetition scheme is

$$
\frac{k!}{k_{1}!\ldots k_{s}!}
$$

while $P\left(\bar{K}=\left(k_{1}, \ldots, k_{s}\right) \mid \bar{S}=s\right)$ is the probability of such a sequence. Note that

$$
P\left(\bar{K}=\left(k_{1}, \ldots, k_{s}\right) \mid \bar{S}=s\right)=\frac{P\left(\bar{K}=\left(k_{1}, \ldots, k_{s}\right) \wedge \bar{S}=s\right)}{P(\bar{S}=s)}
$$

and $P\left(\bar{K}=\left(k_{1}, \ldots, k_{s}\right) \wedge \bar{S}=s\right)=P\left(\bar{K}=\left(k_{1}, \ldots, k_{s}\right)\right)$ because $\left(k_{1}, \ldots, k_{s}\right)$ contains all the information about the number of distinct elements \bar{S}.
As an example, when $k=4$, the probability of having \bar{S} distinct elements in the array is

$$
\begin{aligned}
& P(\bar{S}=1)=\frac{1}{n^{3}} \\
& P(\bar{S}=2)=\frac{7(n-1)}{n^{3}} \\
& P(\bar{S}=3)=\frac{6(n-1)(n-2)}{n^{3}} \\
& P(\bar{S}=4)=\frac{(n-1)(n-2)(n-3)}{n^{3}}
\end{aligned}
$$

which sums to 1 . The average number of possible permutations of a sequence with s distinct element is

$$
\begin{aligned}
& E[\bar{\Phi}(1, k, n)]=1 \\
& E[\bar{\Phi}(2, k, n)]=4.85 \\
& E[\bar{\Phi}(3, k, n)]=12 \\
& E[\bar{\Phi}(4, k, n)]=24
\end{aligned}
$$

Note that the case $\bar{S}=2$ is fractional because the possible multiplicities of two distinct elements in a sequence of 4 are $(1,3),(3,1)$, and $(2,2)$. The permutations for these cases are $4!/(3!1!), 4!/(1!3!)$, and $4!/(2!2!)$. The expected value of the number of permutations is the weighted average of these single permutations.
The average number of possible permutations of a generic sequence with $k=4$ elements is therefore

$$
E[\bar{\Phi}(k, n)]=\frac{-33+82 n-72 n^{2}+24 n^{3}}{n^{3}}
$$

$$
E[\bar{\Phi}(k=4, n)] \text { with varying } n
$$

From the figure, it is visible that, when the number of total elements n approaches the number of selected elements k, the average number of total permutations is far from 24, i.e., the permutation of k distinct elements. This is due to the fact that, even when $n=k$, the probability of choosing 4 distinct values is very low, precisely in this case 9%.

$$
\begin{aligned}
& P(\bar{S}=1)=1 \% \quad \longrightarrow E[\Phi(1, k, n)]=1 \\
& P(\bar{S}=2)=32 \% \quad \longrightarrow E[\Phi(2, k, n)]=4.85 \\
& P(\bar{S}=3)=56 \% \quad \longrightarrow E[\bar{\Phi}(3, k, n)]=12 \\
& P(\bar{S}=4)=9 \%
\end{aligned} \longrightarrow E[\Phi(4, k, n)]=24
$$

From the figure, it is also visible that $E[\bar{\Phi}(k, n)]$ increases with n, and tend to 24 , i.e., to $E[\bar{\Phi}(k, k, n)]$, when $n \longrightarrow \infty$. This is due to the fact that the probability of selecting k distinct elements is equal to 1 when the pool is very large $n \longrightarrow \infty$. Therefore the number of total permutations is equal to the one of k distinct elements. In other words, given a large pool of elements (n), an ordered sequence of k elements built by randomly selecting elements from this pool has on average k ! possible permutations.

