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Dual Space

For every vector space V over k, V ∗ is the dual space of V iff

V ∗ = L (V, k)

i.e., V ∗ is the set of all linear maps from V to k with the inherited operation + and ·e that makes it a
vector space. The standard basis for V ∗ is the set of elements {∂xi}i defined as

∂xi : V −→ k
x −→ xi

where xi is the i-th component of x. V ∗ is the set of the 1-forms in V .

Derivative of a Map

Given ψ a smooth map between two manifolds M and N , the derivative of ψ is defined as the function

dψ : M −→ F (TM, TN)

such that
dψ (p) : TpM −→ Tψ(p)N

and, ∀γ ∈ TpM ,
dψ (p) (γ) = [ψ ◦ γ]Tψ(p)N

dψ (p) maps curves of the tangent space of M in p, to curves in the tangent space of N in ψ (p).
[·]Tψ(p)N

represents the equivalence class in the tangent space Tψ(p)N .

dψ (p) is a linear map between tangent spaces.
The derivative operator d (·), also known as push-forward operator, maps

d : F (M,N) −→ F (M,F (TM, TN))

The concept of linearity for the push-forward operator exists only for specific pairs of manifolds M , N ,
where i.e. the concept of vector space has sense.
In case of M and N equal to Rm and Rn respectively, the push-forward d (·) is equivalent to the Jacobian
operator J (·) which produces a linear approximation of the input function around a specific point in its
domain.
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Derivative of a Smooth Curve

A smooth curve γ : R −→M over a manifold M can be viewed as a smooth map from the manifold R to
the manifold M . The concept of derivative can be inherited as

dγ (t) : TtR −→ Tγ(t)M

Since TtR contains one direction but infinite speeds, and due to the linearity of dγ (t), dγ (t) can be
represented with a unique element in TM , i.e. the curve corresponding to [1], i.e. the class of curves
passing though t with derivative equal to 1.
We can therefore define

∂γ : R −→ TM
t −→ dγ (t) ([1])

∂γ (t) is therefore the class of curve in Tγ(t)M with the same tangent and speed of γ in t.
Remember that, the tangent space of a manifold in a point p is the set of all the classes of curves each
passing through p, such that curves having the same tangent and speed in p are grouped in the same class.

Derivative of a Functional

A smooth functional over M , ψ : M −→ R can be viewed as a smooth map between M and the manifold
R. The concept of derivative is inherited as

dψ : M −→ F (TM, TR)

and, since TR = R,
dψ (p) : TpM −→ R

dψ (p) belongs therefore to the dual of TpM , i.e.

dψ : M −→ T ∗M

where T ∗M is the bundle comprising of all (TpM)∗ for every p ∈M .
From the initial definition of derivative, we have that ∀γ ∈ TpM ,

dψ (p) (γ) = ψ ◦ γ

where the class operator [·] as we are operating in R.

Cotangent Space

The cotangent space of M in p is defined as the dual of the tangent space of M in p

T ∗pM = (TpM)∗

Note that, this definition always exists as TpM is always a vector space even if it is made of curves. T ∗pM
maps curves to real numbers.
From a derivative point of view, the tangent bundle of a manifold TM consists of all the possible derivatives
of smooth curves over M , i.e. of maps of kind γ : R −→ M . The cotangent bundle T ∗M instead consists
of all the possible derivatives of smooth funcionals on M , i.e. of maps of kind γ : M −→ R.
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Derivative for Manifolds immerse in Vector Spaces

The concept of derivative allows us to bundle a vector space to each point on the manifold such that it is
isomorphic to the tangent space and has a meaning in terms of derivative. Once this space is bundled we
can use, as tangent space, either the original one (made with curves), or a second one (made with elements
of the vector space in which the manifold is immersed in).
This creates the duality visible in SO (3) of an element of a tangent space being both a curve and an
anti-simmetric matrix.

Derivative of a Smooth Curve

If M is a manifold immerse in a vector space V , a smooth curve over M is also a smooth curve over V . If
V has its own concept of derivative, then there exists a second concept of derivative for this curve inherited
from this space, which is

∂V γ (t) = lim
ε−→0

γ (t+ ε)− γ (t)

ε
In these scenarios, it is common to connect, when possible, these two concepts of derivatives by an
isomorphism. This connection does not always exists but when it does it forces a unique isomorphism
between a subspace of V , Sp ⊆ V and TpM for every p ∈M .

Sp ←→ TpM

For every curve γ such that γ (t) = p, the isomorphism Ωp : TpM −→ Sp follows

Ωp ([∂γ (t)]) = ∂V γ (t)

i.e. Ωp (x) is the element of Sp that results from deriving at a specific time t any smooth curve that passes
through p at time t and has as pushforward ∂ the element x.
SO(3) and SE(3): SO (3) is immerse in V = R3x3, the subspace SR for R ∈ SO (3) is defined as

SR =
{
ωR | ∀ω ∈ R3x3 anti-symmetric

}
This can be proven by deriving a curve over SO (3) around R which leads to an anti-symmetric matrix
multiplied to R.
SI , i.e. the tangent space at the identity is defined as

SI =
{
ω | ∀ω ∈ R3x3 anti-symmetric

}
and it is isomorphic to the Lie Algebra so (3) using the same isomorphism.

Derivative of a Functional

As for the smooth curves, the concept of derivative for functionals over M generates an isomorphism
between V ∗ and T ∗pM . Specifically from S∗p ←→ T ∗pM which is the same S∗p found for the smooth curves.
This is much easier to prove due to the definition of dψ : M −→ T ∗M where it clearly make a reference
to TpM −→ R. So if we admit that there exists a connection between Sp ←→ TpM then there should be
a connection S∗p ←→ T ∗pM .
SO(3) and SE(3): S∗R for R ∈ SO (3) is defined as

S∗R = L (SR,R)

i.e. as the set of all the linear maps from the 3x3 matrices SR and R. Since they are linear maps, each of
its elements v ∈ S∗R can be represented as

v (m) = km↓

where m is a 3x3 matrix in SR, while the vector k ∈ R9 uniquiely identify the element v in S∗R.
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PullBack of a Map

Given ψ a smooth map between two manifolds M and N , elements in M transform to N with ψ, elements
in TM transform with dψ, while elements in T ∗M transform with d∗ψ.

ψ : M −→ N
dψ : M −→ TM −→ TN
d∗ψ : M −→ T ∗N −→ T ∗M

dψ is called push-forward of ψ.
d∗ψ is called pull-back of ψ, and defined for every p ∈M as

d∗ψ (p) (γ) = γ ◦ dψ (p)

where γ : TN −→ R is a smooth functional in TN , and γ ◦ dψ (p) is a map from TM −→ TN −→ R,
therefore d∗ψ (p) (γ) ∈ T ∗M .

Transformations: Covariant and Contravariant

Since elements in TM and elements in T ∗M transforms in different ways with a change of reference system,
they are called with different names, precisely, vectors and co-vectors, respectively.
Since the vectors transform in a different way that the point on a manifold, they are called contra-variant
(they varies in a different way).
Since the co-vectors transform in a similar way that the point on a manifold, they are called covariant.
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