Pushforward Operator: Derivatives on a Manifold

Luca Ballan

Jan/2017

Dual Space

For every vector space V over \Bbbk , V^* is the dual space of V iff

 $V^* = L\left(V, \Bbbk\right)$

i.e., V^* is the set of all linear maps from V to k with the inherited operation + and \cdot_e that makes it a vector space. The standard basis for V^* is the set of elements $\{\partial x_i\}_i$ defined as

where x_i is the *i*-th component of x. V^* is the set of the 1-forms in V.

Derivative of a Map

Given ψ a smooth map between two manifolds M and N, the derivative of ψ is defined as the function

$$d\psi: M \longrightarrow \mathbb{F}(TM, TN)$$

such that

$$d\psi(p): T_p M \longrightarrow T_{\psi(p)} N$$

and, $\forall \gamma \in T_p M$,

$$d\psi\left(p\right)\left(\gamma\right) = \left[\psi \circ \gamma\right]_{T_{\psi\left(p\right)}N}$$

 $d\psi(p)$ maps curves of the tangent space of M in p, to curves in the tangent space of N in $\psi(p)$. $[\cdot]_{T_{\psi(p)}N}$ represents the equivalence class in the tangent space $T_{\psi(p)}N$.

 $d\psi(p)$ is a linear map between tangent spaces.

The derivative operator $d(\cdot)$, also known as push-forward operator, maps

$$d: \mathbb{F}(M, N) \longrightarrow \mathbb{F}(M, \mathbb{F}(TM, TN))$$

The concept of linearity for the push-forward operator exists only for specific pairs of manifolds M, N, where i.e. the concept of vector space has sense.

In case of M and N equal to \mathbb{R}^m and \mathbb{R}^n respectively, the push-forward $d(\cdot)$ is equivalent to the Jacobian operator $J(\cdot)$ which produces a linear approximation of the input function around a specific point in its domain.

Derivative of a Smooth Curve

A smooth curve $\gamma : \mathbb{R} \longrightarrow M$ over a manifold M can be viewed as a smooth map from the manifold \mathbb{R} to the manifold M. The concept of derivative can be inherited as

$$d\gamma(t): T_t \mathbb{R} \longrightarrow T_{\gamma(t)} M$$

Since $T_t \mathbb{R}$ contains one direction but infinite speeds, and due to the linearity of $d\gamma(t)$, $d\gamma(t)$ can be represented with a unique element in TM, i.e. the curve corresponding to [1], i.e. the class of curves passing though t with derivative equal to 1.

We can therefore define

$$\begin{array}{rccc} \partial \gamma : & \mathbb{R} & \longrightarrow & TM \\ & t & \longrightarrow & d\gamma \left(t \right) \left(\left[1 \right] \right) \end{array}$$

 $\partial \gamma(t)$ is therefore the class of curve in $T_{\gamma(t)}M$ with the same tangent and speed of γ in t. Remember that, the tangent space of a manifold in a point p is the set of all the classes of curves each

passing through p, such that curves having the same tangent and speed in p are grouped in the same class.

Derivative of a Functional

A smooth functional over $M, \psi: M \longrightarrow \mathbb{R}$ can be viewed as a smooth map between M and the manifold \mathbb{R} . The concept of derivative is inherited as

$$d\psi: M \longrightarrow \mathbb{F}\left(TM, T\mathbb{R}\right)$$

and, since $T\mathbb{R} = \mathbb{R}$,

 $d\psi(p): T_p M \longrightarrow \mathbb{R}$

 $d\psi(p)$ belongs therefore to the dual of T_pM , i.e.

$$d\psi: M \longrightarrow T^*M$$

where T^*M is the bundle comprising of all $(T_pM)^*$ for every $p \in M$. From the initial definition of derivative, we have that $\forall \gamma \in T_pM$,

$$d\psi\left(p\right)\left(\gamma\right) = \psi \circ \gamma$$

where the class operator $[\cdot]$ as we are operating in \mathbb{R} .

Cotangent Space

The cotangent space of M in p is defined as the dual of the tangent space of M in p

$$T_p^*M = (T_pM)^*$$

Note that, this definition always exists as T_pM is always a vector space even if it is made of curves. T_p^*M maps curves to real numbers.

From a derivative point of view, the tangent bundle of a manifold TM consists of all the possible derivatives of smooth curves over M, i.e. of maps of kind $\gamma : \mathbb{R} \longrightarrow M$. The cotangent bundle T^*M instead consists of all the possible derivatives of smooth functionals on M, i.e. of maps of kind $\gamma : M \longrightarrow \mathbb{R}$.

Derivative for Manifolds immerse in Vector Spaces

The concept of derivative allows us to bundle a vector space to each point on the manifold such that it is isomorphic to the tangent space and has a meaning in terms of derivative. Once this space is bundled we can use, as tangent space, either the original one (made with curves), or a second one (made with elements of the vector space in which the manifold is immersed in).

This creates the duality visible in SO(3) of an element of a tangent space being both a curve and an anti-simmetric matrix.

Derivative of a Smooth Curve

If M is a manifold immerse in a vector space V, a smooth curve over M is also a smooth curve over V. If V has its own concept of derivative, then there exists a second concept of derivative for this curve inherited from this space, which is

$$\partial^{V} \gamma\left(t\right) = \lim_{\varepsilon \longrightarrow 0} \frac{\gamma\left(t + \varepsilon\right) - \gamma\left(t\right)}{\varepsilon}$$

In these scenarios, it is common to connect, when possible, these two concepts of derivatives by an isomorphism. This connection does not always exists but when it does it forces a unique isomorphism between a subspace of $V, S_p \subseteq V$ and T_pM for every $p \in M$.

$$S_p \longleftrightarrow T_p M$$

For every curve γ such that $\gamma(t) = p$, the isomorphism $\Omega_p: T_pM \longrightarrow S_p$ follows

$$\Omega_{p}\left(\left[\partial\gamma\left(t\right)\right]\right) = \partial^{V}\gamma\left(t\right)$$

i.e. $\Omega_p(x)$ is the element of S_p that results from deriving at a specific time t any smooth curve that passes through p at time t and has as pushforward ∂ the element x.

SO(3) and **SE(3)**: SO(3) is immerse in $V = \mathbb{R}^{3x3}$, the subspace S_R for $R \in SO(3)$ is defined as

$$S_R = \left\{ \omega R \mid \forall \omega \in \mathbb{R}^{3x3} \text{ anti-symmetric} \right\}$$

This can be proven by deriving a curve over SO(3) around R which leads to an anti-symmetric matrix multiplied to R.

 S_I , i.e. the tangent space at the identity is defined as

$$S_I = \left\{ \omega \mid \forall \omega \in \mathbb{R}^{3x3} \text{ anti-symmetric} \right\}$$

and it is isomorphic to the Lie Algebra so(3) using the same isomorphism.

Derivative of a Functional

As for the smooth curves, the concept of derivative for functionals over M generates an isomorphism between V^* and T_p^*M . Specifically from $S_p^* \longleftrightarrow T_p^*M$ which is the same S_p^* found for the smooth curves. This is much easier to prove due to the definition of $d\psi: M \longrightarrow T^*M$ where it clearly make a reference to $T_pM \longrightarrow \mathbb{R}$. So if we admit that there exists a connection between $S_p \longleftrightarrow T_pM$ then there should be a connection $S_p^* \longleftrightarrow T_p^* M$. SO(3) and SE(3): S_R^* for $R \in SO(3)$ is defined as

$$S_R^* = L\left(S_R, \mathbb{R}\right)$$

i.e. as the set of all the linear maps from the 3x3 matrices S_R and \mathbb{R} . Since they are linear maps, each of its elements $v \in S_R^*$ can be represented as

$$v\left(m\right) = km^{\downarrow}$$

where m is a 3x3 matrix in S_R , while the vector $k \in \mathbb{R}^9$ uniquiely identify the element v in S_R^* .

PullBack of a Map

Given ψ a smooth map between two manifolds M and N, elements in M transform to N with ψ , elements in TM transform with $d\psi$, while elements in T^*M transform with $d^*\psi$.

 $d\psi$ is called **push-forward** of ψ .

 $d^*\psi$ is called **pull-back** of ψ , and defined for every $p \in M$ as

$$d^{*}\psi\left(p\right)\left(\gamma\right) = \gamma \circ d\psi\left(p\right)$$

where $\gamma : TN \longrightarrow \mathbb{R}$ is a smooth functional in TN, and $\gamma \circ d\psi(p)$ is a map from $TM \longrightarrow TN \longrightarrow \mathbb{R}$, therefore $d^*\psi(p)(\gamma) \in T^*M$.

Transformations: Covariant and Contravariant

Since elements in TM and elements in T^*M transforms in different ways with a change of reference system, they are called with different names, precisely, **vectors** and **co-vectors**, respectively.

Since the vectors transform in a different way that the point on a manifold, they are called **contra-variant** (they varies in a different way).

Since the co-vectors transform in a similar way that the point on a manifold, they are called **covariant**.