Pushforward Operator: Derivatives on a Manifold

Luca Ballan

Jan/2017

Dual Space

For every vector space V over \mathbb{k}, V^{*} is the dual space of V iff

$$
V^{*}=L(V, \mathbb{k})
$$

i.e., V^{*} is the set of all linear maps from V to \mathbb{k} with the inherited operation + and \cdot_{e} that makes it a vector space. The standard basis for V^{*} is the set of elements $\left\{\partial x_{i}\right\}_{i}$ defined as

$$
\begin{aligned}
& \partial x_{i}: V \\
& \longrightarrow \\
& \mathbb{k} \\
& x \longrightarrow \\
& x_{i}
\end{aligned}
$$

where x_{i} is the i-th component of $x . V^{*}$ is the set of the 1-forms in V.

Derivative of a Map

Given ψ a smooth map between two manifolds M and N, the derivative of ψ is defined as the function

$$
d \psi: M \longrightarrow \mathbb{F}(T M, T N)
$$

such that

$$
d \psi(p): T_{p} M \longrightarrow T_{\psi(p)} N
$$

and, $\forall \gamma \in T_{p} M$,

$$
d \psi(p)(\gamma)=[\psi \circ \gamma]_{T_{\psi(p)} N}
$$

$d \psi(p)$ maps curves of the tangent space of M in p, to curves in the tangent space of N in $\psi(p)$.
$[\cdot]_{T_{\psi(p)} N}$ represents the equivalence class in the tangent space $T_{\psi(p)} N$.
$d \psi(p)$ is a linear map between tangent spaces.
The derivative operator $d(\cdot)$, also known as push-forward operator, maps

$$
d: \mathbb{F}(M, N) \longrightarrow \mathbb{F}(M, \mathbb{F}(T M, T N))
$$

The concept of linearity for the push-forward operator exists only for specific pairs of manifolds M, N, where i.e. the concept of vector space has sense.
In case of M and N equal to \mathbb{R}^{m} and \mathbb{R}^{n} respectively, the push-forward $d(\cdot)$ is equivalent to the Jacobian operator $J(\cdot)$ which produces a linear approximation of the input function around a specific point in its domain.

Derivative of a Smooth Curve

A smooth curve $\gamma: \mathbb{R} \longrightarrow M$ over a manifold M can be viewed as a smooth map from the manifold \mathbb{R} to the manifold M. The concept of derivative can be inherited as

$$
d \gamma(t): T_{t} \mathbb{R} \longrightarrow T_{\gamma(t)} M
$$

Since $T_{t} \mathbb{R}$ contains one direction but infinite speeds, and due to the linearity of $d \gamma(t)$, $d \gamma(t)$ can be represented with a unique element in $T M$, i.e. the curve corresponding to [1], i.e. the class of curves passing though t with derivative equal to 1 .
We can therefore define

$$
\left.\begin{array}{rl}
\partial \gamma: & \mathbb{R}
\end{array}\right] T M=\left[\begin{array}{ll}
& \longrightarrow(t)([1])
\end{array}\right.
$$

$\partial \gamma(t)$ is therefore the class of curve in $T_{\gamma(t)} M$ with the same tangent and speed of γ in t.
Remember that, the tangent space of a manifold in a point p is the set of all the classes of curves each passing through p, such that curves having the same tangent and speed in p are grouped in the same class.

Derivative of a Functional

A smooth functional over $M, \psi: M \longrightarrow \mathbb{R}$ can be viewed as a smooth map between M and the manifold \mathbb{R}. The concept of derivative is inherited as

$$
d \psi: M \longrightarrow \mathbb{F}(T M, T \mathbb{R})
$$

and, since $T \mathbb{R}=\mathbb{R}$,

$$
d \psi(p): T_{p} M \longrightarrow \mathbb{R}
$$

$d \psi(p)$ belongs therefore to the dual of $T_{p} M$, i.e.

$$
d \psi: M \longrightarrow T^{*} M
$$

where $T^{*} M$ is the bundle comprising of all $\left(T_{p} M\right)^{*}$ for every $p \in M$.
From the initial definition of derivative, we have that $\forall \gamma \in T_{p} M$,

$$
d \psi(p)(\gamma)=\psi \circ \gamma
$$

where the class operator $[\cdot]$ as we are operating in \mathbb{R}.

Cotangent Space

The cotangent space of M in p is defined as the dual of the tangent space of M in p

$$
T_{p}^{*} M=\left(T_{p} M\right)^{*}
$$

Note that, this definition always exists as $T_{p} M$ is always a vector space even if it is made of curves. $T_{p}^{*} M$ maps curves to real numbers.
From a derivative point of view, the tangent bundle of a manifold $T M$ consists of all the possible derivatives of smooth curves over M, i.e. of maps of kind $\gamma: \mathbb{R} \longrightarrow M$. The cotangent bundle $T^{*} M$ instead consists of all the possible derivatives of smooth funcionals on M, i.e. of maps of kind $\gamma: M \longrightarrow \mathbb{R}$.

Derivative for Manifolds immerse in Vector Spaces

The concept of derivative allows us to bundle a vector space to each point on the manifold such that it is isomorphic to the tangent space and has a meaning in terms of derivative. Once this space is bundled we can use, as tangent space, either the original one (made with curves), or a second one (made with elements of the vector space in which the manifold is immersed in).
This creates the duality visible in $S O(3)$ of an element of a tangent space being both a curve and an anti-simmetric matrix.

Derivative of a Smooth Curve

If M is a manifold immerse in a vector space V, a smooth curve over M is also a smooth curve over V. If V has its own concept of derivative, then there exists a second concept of derivative for this curve inherited from this space, which is

$$
\partial^{V} \gamma(t)=\lim _{\varepsilon \rightarrow 0} \frac{\gamma(t+\varepsilon)-\gamma(t)}{\varepsilon}
$$

In these scenarios, it is common to connect, when possible, these two concepts of derivatives by an isomorphism. This connection does not always exists but when it does it forces a unique isomorphism between a subspace of $V, S_{p} \subseteq V$ and $T_{p} M$ for every $p \in M$.

$$
S_{p} \longleftrightarrow T_{p} M
$$

For every curve γ such that $\gamma(t)=p$, the isomorphism $\Omega_{p}: T_{p} M \longrightarrow S_{p}$ follows

$$
\Omega_{p}([\partial \gamma(t)])=\partial^{V} \gamma(t)
$$

i.e. $\Omega_{p}(x)$ is the element of S_{p} that results from deriving at a specific time t any smooth curve that passes through p at time t and has as pushforward ∂ the element x.
$\mathbf{S O}(3)$ and $\mathbf{S E}(3): S O(3)$ is immerse in $V=\mathbb{R}^{3 x 3}$, the subspace S_{R} for $R \in S O(3)$ is defined as

$$
S_{R}=\left\{\omega R \mid \forall \omega \in \mathbb{R}^{3 x 3} \text { anti-symmetric }\right\}
$$

This can be proven by deriving a curve over $S O$ (3) around R which leads to an anti-symmetric matrix multiplied to R.
S_{I}, i.e. the tangent space at the identity is defined as

$$
S_{I}=\left\{\omega \mid \forall \omega \in \mathbb{R}^{3 x 3} \text { anti-symmetric }\right\}
$$

and it is isomorphic to the Lie Algebra so (3) using the same isomorphism.

Derivative of a Functional

As for the smooth curves, the concept of derivative for functionals over M generates an isomorphism between V^{*} and $T_{p}^{*} M$. Specifically from $S_{p}^{*} \longleftrightarrow T_{p}^{*} M$ which is the same S_{p}^{*} found for the smooth curves. This is much easier to prove due to the definition of $d \psi: M \longrightarrow T^{*} M$ where it clearly make a reference to $T_{p} M \longrightarrow \mathbb{R}$. So if we admit that there exists a connection between $S_{p} \longleftrightarrow T_{p} M$ then there should be a connection $S_{p}^{*} \longleftrightarrow T_{p}^{*} M$.
$\mathrm{SO}(3)$ and $\mathrm{SE}(3): S_{R}^{*}$ for $R \in S O(3)$ is defined as

$$
S_{R}^{*}=L\left(S_{R}, \mathbb{R}\right)
$$

i.e. as the set of all the linear maps from the $3 x 3$ matrices S_{R} and \mathbb{R}. Since they are linear maps, each of its elements $v \in S_{R}^{*}$ can be represented as

$$
v(m)=k m^{\downarrow}
$$

where m is a $3 x 3$ matrix in S_{R}, while the vector $k \in \mathbb{R}^{9}$ uniquiely identify the element v in S_{R}^{*}.

PullBack of a Map

Given ψ a smooth map between two manifolds M and N, elements in M transform to N with ψ, elements in $T M$ transform with $d \psi$, while elements in $T^{*} M$ transform with $d^{*} \psi$.

$$
\begin{array}{rlll}
\psi: & M & \longrightarrow N \\
d \psi: & M & \longrightarrow T M & \longrightarrow T N \\
d^{*} \psi: & M & \longrightarrow & T^{*} N
\end{array} \longrightarrow T^{*} M
$$

$d \psi$ is called push-forward of ψ.
$d^{*} \psi$ is called pull-back of ψ, and defined for every $p \in M$ as

$$
d^{*} \psi(p)(\gamma)=\gamma \circ d \psi(p)
$$

where $\gamma: T N \longrightarrow \mathbb{R}$ is a smooth functional in $T N$, and $\gamma \circ d \psi(p)$ is a map from $T M \longrightarrow T N \longrightarrow \mathbb{R}$, therefore $d^{*} \psi(p)(\gamma) \in T^{*} M$.

Transformations: Covariant and Contravariant

Since elements in $T M$ and elements in $T^{*} M$ transforms in different ways with a change of reference system, they are called with different names, precisely, vectors and co-vectors, respectively.
Since the vectors transform in a different way that the point on a manifold, they are called contra-variant (they varies in a different way).
Since the co-vectors transform in a similar way that the point on a manifold, they are called covariant.

