Mathematical Foundations of Computer Graphics and Vision

Metrics on SO(3) and Inverse Kinematics

Luca Ballan

Optimization on Manifolds

$\left\{\begin{array}{l}x^{*}(0)=x_{0} \\ \frac{\partial x^{*}}{\partial t}(t)=-\beta d\end{array}\right.$

- Descent approach
- d is a ascent direction

Optimization on Manifolds

- Given the current point $x^{*}(0)$
- Compute the directional derivative for each direction λ, i.e. for each curve

$$
\frac{\partial L}{\partial \lambda}\left(x^{*}(0)\right) \in \mathbb{R}
$$

Determine the λ for which $\frac{\partial L}{\partial \lambda}\left(x^{*}(0)\right)$
is maximum

- Move along this λ

Optimization on Manifolds

Given the current point $x^{*}(0)$

- Compute the directional derivative for each direction λ, i.e. for each curve

$$
\frac{\partial L}{\partial \lambda}\left(x^{*}(0)\right) \in \mathbb{R}
$$

- Determine the λ for which $\frac{\partial L}{\partial \lambda}\left(x^{*}(0)\right)$
is maximum is maximum
- Move along this λ

Last Lecture

Rigid transformations

(maps which preserve distances and space orientation)

$4 \exp : s o(n) \rightarrow S O(n)$ - smooth map

- coincides with the
$S O(n)=-\mathrm{k}-$ manifold of the rotation matrices immerse in $\mathbb{R}^{n \times n}$
- Lie group matrix exponential

$$
\exp (M)=\sum_{k=0}^{\infty} \frac{1}{k!} M^{k}
$$

Exponential Map

- The exponential map is a function proper of a Lie Group

- For matrix groups

$$
\exp (A)=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}
$$

- For SO(3), Rodrigues' rotation formula:
- Smooth

$$
\exp (\widehat{a})=I+\frac{\sin (\|a\|)}{\|a\|} \widehat{a}+\frac{(1-\cos (\|a\|))}{\|a\|^{2}} \widehat{a}^{2}
$$

- Surjective
- not Injective
- not Linear $\quad e^{X+Y} \neq e^{X} e^{Y} \quad$ (not an isomorphism)
- $\partial e^{X}=\partial X e^{X}=e^{X} \partial X$

Logarithm Map

- Since $\exp (\cdot)$ is surjective... it exists at least an inverse

- The inverse of $\exp (\cdot)$ is

$$
\log (X)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}(X-I)^{k}
$$

- For SO(3), Rodrigues' rotation formula:

$$
\begin{gathered}
\log (X)=\frac{1}{2 \sin (\theta)}\left(X-X^{T}\right) \quad R \neq I \\
\theta=\arccos \left(\frac{\operatorname{trace}(X)-1}{2}\right)
\end{gathered}
$$

Properties

$$
\begin{aligned}
& \log (I)=0=\widehat{0} \\
& \log \left(X^{-1}\right)=-\log (X) \\
& \log (X Y) \neq \log (X)+\log (Y) \\
& e^{\log (X)}=X \\
& \log \left(e^{A}\right)=? \\
& \partial \log (X)=X^{-1} \partial X
\end{aligned}
$$

Identity
Inverse
in general not "Linear"
(different from the standard \log in \mathbb{R})

$$
e^{X} e^{Y} \neq e^{Y} e^{X}
$$

Derivative

Last Lecture

- There exists a famous "local chart" for $S O(3)$

- Euler-Angle representation (cube)
- Intuitive (easy to visualize)
- Easy to set constraints
- any rotation matrix in $\mathrm{SO}(3)$ can be describe as a non-unique combination of 3 rotations
(e.g. one along the x-axis, one on the y-axis, and one on the z-axis)
- Although it is widely used, this representation has some problems
- Topology is not conserved $\quad(0,2 \pi)$
- Metric is distorted

- Derivative is complex (although people use it)

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & -\sin (\alpha) \\
0 & \sin (\alpha) & \cos (\alpha)
\end{array}\right]\left[\begin{array}{ccc}
\cos (\beta) & 0 & \sin (\beta) \\
0 & 1 & 0 \\
-\sin (\beta) & 0 & \cos (\beta)
\end{array}\right]\left[\begin{array}{ccc}
\cos (\gamma) & -\sin (\gamma) & 0 \\
\sin (\gamma) & \cos (\gamma) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Gimbal Lock

Content

- Interpolation in SO(3)
- Metric in SO(3)
- Kinematic chains

Interpolation in SO(3)

- Given two rotation matrices $R_{1}, R_{2} \in S O(3)$, one would like to find a smooth path in SO(3) connecting these two matrices.

$$
\left\{\begin{array}{l}
R(\lambda) \in S O(3) \quad \lambda \in[0,1] \\
R(\lambda) \text { smooth } \\
R(0)=R_{1} \\
R(1)=R_{2}
\end{array}\right.
$$

R_{1}

Interpolation in SO(3)

Approach 1: Linearly interpolate R1 and R2 in one of their representation

- Euler angles:

- R1, R2 too far -> not intuitive motion
- Topology is not conserved

Interpolation in SO(3)

Approach 1: Linearly interpolate R1 and R2 in one of their representation

- Angle-Axis:

$$
\omega(\lambda)=\left(\lambda \omega_{1}+(1-\lambda) \omega_{2}\right)
$$

- Interpolate on a plane and then project on a sphere
- The movement is not linear with a constant speed. It gets faster the more away it is from the Identity

Interpolation in SO(3)

Approach 2: Linearly interpolate R1 and R2 as matrices

- it needs to be projected back on the sphere

Not an element of SO(3)
because it is a multiplicative group not an additive one
$\pi_{S O(3)}(M)=\underset{R \in S O(3)}{\arg \min }\|M-R\|_{F}^{2}$

- if R1, R2 are far away from each other, the speed is not linear at all

Interpolation in $\mathrm{SO}(3)$

Approach 3: use the geodesics of SO(3)

- Lie Groups: a line passing through 0 in the Lie algebra maps to a geodesic of the Lie group through the identity

\Rightarrow consequently the curve

$$
R(\lambda)=e^{\lambda \widehat{\omega}}
$$

is a geodesic of SO(3) passing through I

This holds only for any line passing through 0 and consequently for any geodesic passing through the identity

Interpolation in SO(3)

- To find the geodesic passing through R_{1} and R_{2} we need to rotate the ball $\mathrm{SO}(3)$ by R_{1}^{-1}

$$
R_{1}^{-1} R_{1} \longrightarrow R_{1}^{-1} R_{2}
$$

$$
I \quad \longrightarrow \quad e^{\log \left(R_{1}^{-1} R_{2}\right)}
$$

$$
I \quad \longrightarrow \quad e^{\lambda \log \left(R_{1}^{-1} R_{2}\right)} \quad \text { geodesic between } I \text { and } R_{1}^{-1} R_{2}
$$

$$
\text { SLERP } \quad R_{1} \quad \longrightarrow \quad R_{1} e^{\lambda \log \left(R_{1}^{-1} R_{2}\right)} \quad \text { geodesic between } R_{1} \text { and } R_{2}
$$

(spherical linear
interpolation)

- The resulting motion is very intuitive and it is performed at uniform angular speed in $S O$ (3)

Interpolation in SO(3)

- On a vector space with Euclidean metric, the geodesic connecting R_{1} and R_{2} would have corresponded to the straight line

$$
R(\lambda)=R_{1}+\lambda\left(R_{2}-R_{1}\right)
$$

Questions?

- Given two rotations R1 and R2, interpolate along the geodesic starting from R1 passing n times through R 2 and R 1 and ending in R 2 .
something like this but not limited to a single axis

A word about quaternions

- PRO: easy to compute SLERP
- CON: difficult to perform derivatives in this space $q \cdot s \cdot q^{-1}$

Content

- Interpolation in SO(3)
- Metric in SO(3)
- Kinematic chains

Metric in SO(3)

- We talk about geodesics, but what was the used metric?
- a metric tells how close two rotations are
- it is necessary to evaluate an estimator w.r.t. a ground truth

Metric in SO(3)

- We talk about geodesics, but what was the used metric?

$$
d_{R}\left(R_{1}, R_{2}\right)=\frac{1}{\sqrt{2}}\left\|\log \left(R_{1}^{-1} R_{2}\right)\right\|_{F}
$$

Riemannian/Geodesic/Angle metric \star (= to the length of the geodesic connecting R1 and R2)

$$
\|\cdot\|_{F}=\sqrt{2} * \text { lenght }
$$

Metric in SO(3)

- We talk about geodesics, but what was the used metric?

$$
d_{R}\left(R_{1}, R_{2}\right)=\frac{1}{\sqrt{2}}\left\|\log \left(R_{1}^{-1} R_{2}\right)\right\|_{F}
$$

Riemannian/Geodesic/Angle metric (= to the length of the geodesic connecting R1 and R2)

$$
d_{H}\left(R_{1}, R_{2}\right)=\|\log (R 2)-\log (R 1)\|_{F}
$$

Hyperbolic metric

- similar to the Riemannian if R1=1

Hyperbolic metric

Riemannian metric

Metric in SO(3)

- We talk about geodesics, but what was the used metric?

$$
d_{R}\left(R_{1}, R_{2}\right)=\frac{1}{\sqrt{2}}\left\|\log \left(R_{1}^{-1} R_{2}\right)\right\|_{F}
$$

$$
d_{H}\left(R_{1}, R_{2}\right)=\|\log (R 2)-\log (R 1)\|_{F}
$$

$$
d_{F}\left(R_{1}, R_{2}\right)=\|R 1-R 2\|_{F}
$$

Hyperbolic metric

Frobenius metric

Riemannian/Geodesic/Angle metric (= to the length of the geodesic connecting R1 and R2)

Hyperbolic metric

Frobenius/Chordal metric

- not similar to Hyperbolic
- similar to the Riemannian if R1 and R2 are close to each other

Metric in SO(3)

- We talk about geodesics, but what was the used metric?

$$
d_{R}\left(R_{1}, R_{2}\right)=\frac{1}{\sqrt{2}}\left\|\log \left(R_{1}^{-1} R_{2}\right)\right\|_{F}
$$

$$
d_{H}\left(R_{1}, R_{2}\right)=\|\log (R 2)-\log (R 1)\|_{F}
$$

$$
d_{F}\left(R_{1}, R_{2}\right)=\|R 1-R 2\|_{F}
$$

$$
d_{\mathbb{S}^{3}}\left(q_{1}, q_{2}\right)=\left\|q_{1}-q_{2}\right\|_{2}
$$

Riemannian/Geodesic/Angle metric (= to the length of the geodesic connecting R1 and R2)

Hyperbolic metric

Frobenius/Chordal metric

Quaternion metric (related to the space of quaternions, not specifically to the sphere of unit quaternions)

- Similar to the Hyperbolic one

Filtering in SO(3)

- Given n different estimation for the rotation of an object

$$
R_{1}, \ldots, R_{n}
$$

- how can I get a better estimate of R ?

Object at unknown rotation R

Filtering in SO(3)

- Given n different estimation for the rotation of an object

$$
R_{1}, \ldots, R_{n}
$$

- how can I get a better estimate of R ?

Object at unknown rotation R

- Solution: which of these is the best?
- Average the rotation matrices R_{i} ?
$\frac{1}{n} \sum_{i=1}^{n} R_{i}$
(not rotation)
- Average the Euler angles of each R_{i} ?
- Average the angle-axes of each R_{i} ?
$\left(\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}, \frac{1}{n} \sum_{i=1}^{n} \beta_{i}, \frac{1}{n} \sum_{i=1}^{n} \gamma_{i}\right)$
$\frac{1}{n} \sum_{i=1}^{n} \omega_{i}$
- Average the quaternions related to each R_{i} ?

$$
\frac{1}{n} \sum_{i=1}^{n} q_{i}
$$

- Why average?

Filtering in SO(3)

- Why average?
- By saying average, I'm implicitly assuming that the error in the measurements is Gaussian with zero mean

This can be generalized using metrics instead of norms

Filtering in SO(3)

- Why average?
- By saying average, I'm implicitly assuming that the error in the measurements is Gaussian with zero mean

$$
\begin{aligned}
& \begin{array}{l}
\text { Average } \\
\ell_{2}
\end{array}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& \text { Median }=\operatorname{sort}\left(\left\{x_{i}\right\}\right)[n / 2]
\end{aligned}
$$

in case of $\mathrm{SO}(3)$, which metric do we use here?

Filtering in SO(3)

$$
d_{H}\left(R_{1}, R_{2}\right)=\|\log (R 2)-\log (R 1)\|_{F}
$$

$\underset{R \in S O(3)}{\operatorname{argmin}} \sum_{i=1}^{n} d_{H}\left(R, R_{i}\right)^{2}$

Geometric mean

- $=\frac{1}{n} \sum_{i=1}^{n} \log \left(R_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \omega_{i} \quad \begin{aligned} & \text { Average of the angle-axes } \\ & \text { of each } R_{i}\end{aligned}$
- Similar to the projection of $\frac{1}{n} \sum_{i=1}^{n} q_{i}$

Filtering in SO(3)

$$
d_{F}\left(R_{1}, R_{2}\right)=\|R 1-R 2\|_{F}
$$

$\underset{R \in S O(3)}{\operatorname{argmin}} \sum_{i=1}^{n} d_{F}\left(R, R_{i}\right)^{2} \quad$ Matrix mean

- Similar to the projection of $\frac{1}{n} \sum_{i=1}^{n} R_{i}$

Average of the each matrix element

Filtering in SO(3)

$$
d_{R}\left(R_{1}, R_{2}\right)=\frac{1}{\sqrt{2}}\left\|\log \left(R_{1}^{-1} R_{2}\right)\right\|_{F}
$$

$\underset{R \in S O(3)}{\operatorname{argmin}} \sum_{i=1}^{n} d_{R}\left(R, R_{i}\right)^{2}$
Fréchet/Karcker mean

- No close form solution
- Solve a minimization problem
- when the solution R is close to I
$\square=$ Geometric mean
- when the R_{i} are all close together
$\square=$ Matrix mean

Filtering in SO(3)

$d_{R}\left(R_{1}, R_{2}\right)=\frac{1}{\sqrt{2}}\left\|\log \left(R_{1}^{-1} R_{2}\right)\right\|_{F}$

$\underset{R \in S O(3)}{\operatorname{argmin}} \sum_{i=1}^{n} d_{R}\left(R, R_{i}\right)^{2}$
Fréchet/Karcker mean

- Why is so different?
- we need to find the rotation R such that the squared sum of the lengths of all the geodesics connecting R to each R_{i} is minimized
- The geodesics should start from R and not from the identity (like in the geometric mean)
- we need to find the tangent space such that the squared sum of the lengths of all the geodesics of each R_{i} is minimized

Fréchet mean

$$
\underset{R \in S O(3)}{\operatorname{argmin}} \sum_{i=1}^{n} d_{R}\left(R, R_{i}\right)^{2}
$$

- Gradient descent on the manifold
- J. H. Manton, A globally convergent numerical algorithm for computing the centrer of mass on compact Lie groups, ICARCV 2004
- Set $R=\bar{R} \quad$ Matrix or Geometric mean
\longrightarrow - Compute the average on the tangent space of R

$$
r=\sum_{i=1}^{n} \log \left(R^{-1} R_{i}\right)
$$

- Move towards r

$$
R=R e^{r}
$$

Content

- Interpolation in SO(3)
- Metric in SO(3)
- Kinematic chains

Special Euclidean group SE(3)

$S E(3)=\left(S O(3) \times \mathbb{R}^{3}, \times\right)$
Special Euclidean group of order 3

- for simplicity of notation, from now on, we will use homogenous coordinates

$$
\left[\begin{array}{cc}
R & t \\
0 & 1
\end{array}\right] \in S E(3)
$$

- A way of parameterize $\operatorname{SE}(3)$ is the following

$$
\begin{aligned}
\xi= & (\omega, t) \rightarrow\left[\begin{array}{ll}
e^{\widehat{\omega}} & t \\
0 & 1
\end{array}\right]=e^{\widehat{\xi}} \quad \begin{array}{l}
\text { This is not the real exponential } \\
\text { map in SE(3) } \\
\text { (but it is more intuitive) }
\end{array} \\
& \text { Angle/axis representation of the rotation } \omega \in s o(3)
\end{aligned}
$$

- ($\omega, t)$ is called twist, and usually indicated with the symbol ξ

Composition of Rigid Motions

Transform p

Transform the transformation of p

$$
\begin{aligned}
& \xi_{1}=\left(\omega_{1}, t_{1}\right) \\
& \xi_{2}=\left(\omega_{2}, t_{2}\right)
\end{aligned}
$$

ξ_{2} is expressed in local coordinates relative to the framework induced by ξ_{1}

The second transformation is actually performed on the twist

$$
e^{\widehat{\xi_{1}}} \xi_{2}
$$

Kinematic Chain

- A kinematic chain is an ordered set of rigid transformations

- Each \longrightarrow is called bone (A,B,C)
- Each \bigcirc is called joint $\quad(0,1,2,3)$
- joint 0 is called base/root (and assumed to be fixed)
- joint 3 is called end effector

Kinematic Chain

- A kinematic chain is an ordered set of rigid transformations

- Each bone has its own coordinate system determining its position in the space and the orientation of its local axes
- the bones A, B, C are oriented accordingly to the x-axis of the reference system
- The base of each bone corresponds to a joint
- Each reference system is an element of $\operatorname{SE}(3)$ determined by a twists $\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)$
- the twists $\xi_{0}, \xi_{1}, \xi_{2}$, and ξ_{3} all together determine completely the configuration of the kinematic chain

Kinematic Chain

- The base twist ξ_{0} has the form

- All the internal twists (ξ_{1} and ξ_{2}) are defined as

$$
\xi_{1}=\left(\omega_{1},\left(l_{1}, 0,0\right)\right) \longleftarrow \begin{aligned}
& \text { the translation is applied only along the } \mathrm{x} \text {-axis } \\
& \text { with amount } l_{1}
\end{aligned}
$$

$\xi_{2}=\left(\omega_{2},\left(l_{2}, 0,0\right)\right)$
l_{1} and l_{2} denote the length of the bone A and B , respectively

Kinematic Chain

The end effector twist ξ_{3} has the form

$$
\xi_{3}=\left(0,\left(l_{3}, 0,0\right)\right)
$$

\qquad
l_{3} denote the length of the bone C

The orientation of the end effector is the same as the bone C

Kinematic Chain: Summary

- ξ_{0} determines the position of joint 0 and the orientation of bone A
- ξ_{1} determine the position of joint 1 , the length of bone A , and the orientation of bone B w.r.t. the reference system of joint 0
- ξ_{2} determine the position of joint 2, the length of bone B , and the orientation of bone C w.r.t. the reference system of joint 1

$$
\xi_{0}=\left(\omega_{0}, T_{0}\right)
$$

$$
\xi_{2}=\left(\omega_{2},\left(l_{2}, 0,0\right)\right)
$$

- ξ_{3} determine the position of joint 3 and the length of bone C

Kinematic Chain: DOF

- Given the constraints

$$
\begin{aligned}
& \xi_{0}=\left(\omega_{0}, T_{0}\right) \\
& \xi_{1}=\left(\omega_{1},\left(l_{1}, 0,0\right)\right) \\
& \xi_{2}=\left(\omega_{2},\left(l_{2}, 0,0\right)\right) \\
& \xi_{3}=\left(0,\left(l_{3}, 0,0\right)\right)
\end{aligned}
$$

- the actual DOFs of this particular kinematic chain are
$\omega_{0}, \omega_{1}, \omega_{2}$
T_{0}
l_{1}, l_{2}, l_{3}
3×3 DOF
(ball joints)
+3 DOF if the base can move
$+3 \times 1$ DOF if the bone is extendible (prismatic joints)

Kinematic Chain Problems

Given a kinematic chain

- A Forward Kinematics Problem consists in finding the coordinates of the end effector given a specific kinematic chain configuration $\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)$

$$
p\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)=e^{\widehat{\xi_{0}}} e^{\widehat{\xi_{1}}} e^{\widehat{\xi_{2}}} e^{\widehat{\xi_{3}}}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Forward Kinematics of the end effector

Kinematic Chain Problems

Given a kinematic chain

$$
\text { Target } \mathbf{q}
$$

- An Inverse Kinematics Problem consists in finding the configuration of the kinematic chain for which the distance between the end effector and a predefined target point \mathbf{q} is minimized

$$
\left\{\begin{array}{lll}
\arg \min \left\|p\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)-q\right\| & & \\
\text { subject to } & \xi_{0}=\left(\omega_{0}, T_{0}\right) & l_{1}, l_{2}, l_{3} \\
\xi_{1}=\left(\omega_{1},\left(l_{1}, 0,0\right)\right) & \text { fixed/or not } \\
\xi_{2}=\left(\omega_{2},\left(l_{2}, 0,0\right)\right) & T_{0} & \text { fixed/or not } \\
\xi_{3}=\left(0,\left(l_{3}, 0,0\right)\right) & &
\end{array}\right.
$$

Inverse Kinematics Problem

Given a kinematic chain

Generative approach to IK

Generative model for \mathbf{p}
= Forward Kinematics

Kinematics

Inverse Kinematics Problem

$$
\left\{\begin{aligned}
& \arg \min \left\|p\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)-q\right\| \\
& \text { subject to } \quad \begin{array}{l}
\xi_{0}
\end{array}=\left(\omega_{0}, T_{0}\right) \\
& \xi_{1}=\left(\omega_{1},\left(l_{1}, 0,0\right)\right) \\
& \xi_{2}=\left(\omega_{2},\left(l_{2}, 0,0\right)\right) \\
& \xi_{3}=\left(0,\left(l_{3}, 0,0\right)\right)
\end{aligned}\right.
$$

l_{1}, l_{2}, l_{3} fixed/or not
T_{0} fixed/or not

- it is equivalent to a non-linear least square optimization problem (it is equivalent to the squared norm and this is $\|\cdot\|^{2}=x^{2}+y^{2}+z^{2}$) (note: here it does not matter if the norm is squared or not, later it will)
- The problem is under-constrained, 3 equations and (at least) 9 unknowns
- If q is reachable by the kinematic chain, there are infinite solutions to the problem
- If q is not reachable, the solution is unique up to rotations along the bones axes

A Possible Solution

Newton's method

- let denote with x our unknowns $\quad x=\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)$

$$
\arg \min \|p(x)-q\|
$$

- let \bar{x} be the current estimate for the solution
- compute the Taylor expansion of $p(x)$ around \bar{x}

$$
\begin{aligned}
& p(x+\Delta x)=p(\bar{x})+J p(\bar{x}) \Delta x+\ldots \\
& \arg \min \|\overbrace{p(\bar{x})+J p(\bar{x}) \Delta x}-q\| \\
& \text { § } \\
& p(\bar{x})+J p(\bar{x}) \Delta x-q=0 \\
& \Delta x=J p(\bar{x})^{\dagger}(q-p(\bar{x})) \\
& J p(\bar{x})^{\dagger} \text { can be computed } \\
& \text { using SVD, or approximated } \\
& \text { as } \cong J p(\bar{x})^{T} \\
& \text { if speed is critical }
\end{aligned}
$$

The Jacobian of the Forward Kinematics

- Given the forward kinematic

$$
p\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)=e^{\widehat{\xi_{0}}} e^{\widehat{\xi_{1}}} e^{\widehat{\xi_{2}}} e^{\widehat{\xi_{3}}} p
$$

- assuming

$$
\begin{array}{lll}
\xi_{0}=\left(\omega_{0}, T_{0}\right) & & \\
\xi_{1}=\left(\omega_{1},\left(l_{1}, 0,0\right)\right) & l_{1}, l_{2}, l_{3} & \text { fixed } \\
\xi_{2}=\left(\omega_{2},\left(l_{2}, 0,0\right)\right) & T_{0} & \text { fixed }
\end{array}
$$

- and

$$
\omega_{i}=\left(\theta_{i}^{x}, \theta_{i}^{y}, \theta_{i}^{z}\right)
$$

- the Jacobian of the forward kinematic is

$$
J p=\left[\begin{array}{llllllll}
\frac{\partial p}{\partial \theta_{0}^{x}} & \frac{\partial p}{\partial \theta_{0}^{y}} & \frac{\partial p}{\partial \theta_{0}^{z}} & \frac{\partial p}{\partial \theta_{1}^{x}} & \frac{\partial p}{\partial \theta_{1}^{y}} & \frac{\partial p}{\partial \theta_{1}^{z}} & \frac{\partial p}{\partial \theta_{2}^{x}} & \frac{\partial p}{\partial \theta_{2}^{y}}
\end{array} \frac{\partial p}{\partial \theta_{2}^{z}}\right]
$$

$$
\frac{\partial p}{\partial \theta_{2}^{y}}\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)=e^{\widehat{\xi_{0}}} e^{\widehat{\xi_{1}}} \frac{\partial e^{\widehat{\xi_{2}}}}{\partial \theta_{2}^{y}} e^{\widehat{\xi_{3}}} p
$$

The Jacobian of the Forward Kinematics

$\frac{\partial p}{\partial \theta_{2}^{y}}\left(\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}\right)=e^{\widehat{\xi_{0}}} e^{\widehat{\xi_{1}}} \frac{\partial e^{\widehat{\xi_{2}}}}{\partial \theta_{2}^{y}} e^{\widehat{\xi_{3}}} p$

$$
=e^{\widehat{\xi_{0}}} e^{\widehat{\xi_{1}}}\left[\begin{array}{cc}
\frac{\partial e^{\overline{\omega_{2}}}}{\partial \theta_{2}^{y}} & 0 \\
0 & 0
\end{array}\right] e^{\widehat{\xi_{3}}} p
$$

$$
=e^{\widehat{\xi_{0}}} e^{\widehat{\xi_{1}}}\left[\begin{array}{cc}
\frac{\partial \widehat{\omega_{2}}}{\partial \theta_{2}^{y}} e^{\widehat{\omega_{2}}} & 0 \\
0 & 0
\end{array}\right] e^{\widehat{\xi_{3}} p}
$$

$$
=e^{\widehat{\xi_{0}}} e^{\widehat{\xi_{1}}}\left[\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] e^{\widehat{\omega_{2}}} \quad 0\right] e^{\widehat{\xi_{3}} p}
$$

\[

\]

The Jacobian of the Forward Kinematics

- and SO On... (all the other derivatives are computed in a similar way)
- The Jacobian of forward kinematic is very easy to compute if the angle/axis representation is used. On the contrary, if quaternions are used instead, the Jacobian is not as trivial

$$
q_{1} \cdot q_{2} \cdot s \cdot q_{2}^{-1} \cdot q_{1}^{-1}
$$

