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Abstract

Recent efforts attempt to combine together informations of
different passive methods. Critical issues in this research are
the choice of data and how to combine such data in order to
increase the overall information. The combination of stereo
matching and silhouette information has recently received
considerable attention both for obtaining high quality 3D
models and for modelling 3D dynamic scenes, an application
often referred to as 3D video. This work, building on recent
results, reformulates 3D geometry recovery from stereo
and silhouette informaton within a classical deformable
model framework. Experimental verification shows that the
theoretical advantages of the proposed solution improve its
robustness and computational speed.

1 Introduction

The methods for recovering the 3D geometry of objects can be
classified in various ways. A typical classification distinguishes
passive from active methods. Passive sensing refers to the
measurement of visible radiation which is already present in
the scene; active sensing refers instead to the projection of
structured light patterns onto the object or scene to be scanned.

Active sensing facilitates the computation of 3D structure
by intrinsically solving the correspondence problem, a major
issue with passive techniques. In general, active techniques
such as those based on laser range scanning or light pattern
projection tend to be more accurate but more expensive and
slower than their passive counterparts. Furthermore, active
sensing is not always feasible, e.g., for modeling distant or fast-
moving objects. For these reasons and since passive techniques
essentially require standard image capture devices such as
photo-cameras or video-cameras, the interest towards passive
3D reconstruction techniques is bound to remain rather high.
Historical passive sensing methods are stereo vision, structure
from motion, shape from shading, space carving and shadow
carving.

Recent efforts attempt to combine together informations of
different passive methods. Critical issues in this research are

what type of data to use and how to combine them, in order
to actually increase the overall information. The combination
of stereo matching and silhouette information has recently
received considerable attention both for obtaining high quality
3D models [4] and for modelling 3D dynamic scenes [11], an
application often referred to as 3D video.

This work re-addresses this approach within the classical
deformable models framework, exploits silhouette information
in a new way and proposes a solution which has some
theoretical and computational advantages. This paper has
six sections. The second section recalls the state-of-the-art
in the formulation of 3D passive recovery from stereo and
silhouette information and points out the most delicate
issues. Sections 3 reformulates the problem within classical
deformable models framework, defines a new force related to
silhouette information, proves some theoretical advantages of
the proposed reformulation and shows how to solve it. Section
4 adresses a fine grain improvement leading to a re-sampling
more respectful of the geometrical quality of the mesh. Section
5 presents some experimental results. Section 6 draws the
conclusions.

2 Shape recovery from stereo and silhouette information

The proposed 3D passive shape recovery procedure combines
silhouette and stereo-matching information as schematically
shown in Fig.1. The silhouettes are obtained by a segmentation
algorithm [2] [8] from a sequence of photographs of the object
taken from different positions depending on the characteristics
of the scene. Stereo matching is also applied to the picture pairs
of the sequence of photographs if the object is textured. Not all
the pictures used for the silhouettes methods are used for stereo
matching.

Silhouettes are first used by a shape-from-silhouette method
[10] [7] [13] in order to obtain a coarse estimate of the surface;
they are then used in order to correct for stereo-matching errors.
The main advantages of shape-from-silhouette methods are
that the obtained objects are well shaped and there are no
problems with reflecting objects or objects without texture (if
the segmentation algorithm is robust). The major drawback is
that concavities cannot be modelled.

Texture is used by stereo matching methods [9], [16] which,
differently from silhouette based techniques, can model
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Figure 1: The proposed passive 3D modeling pipeline.

concavities. Stereo-matching does not work in regions without
significant texture or where the available texture exhibits
some periodicity. The latter can be partially avoided using a
pyramidal approach [14]. 3D data near the silhouette edge
are usually missing, since in these regions the object points
can be easily mismatched with the background. Luckily,
shape-from-silhouette methods can model these regions rather
well.

In order to evaluate the quality of the obtained 3D mesh the
quality parameters introduced in [5] can be very useful.Qequ

is the index of parametric regularity of a mesh face

Qequ (f) =
6√
3

A

s · h
∈ [0, 1] (1)

whereA is the area of the face,s the semiperimeter andh the
length of the longest edge.Qequ is a value between 0 and 1,
where 1 corresponds to a equilater triangle and thus to maximal
regularity. Another quality index isQplan, which refers to the
geometrical description of the mesh.Qplan is defined as:

Qplan =
n · n1 + n · n2 + n · n3

3
∈ [0, 1] (2)

where n is the normal to the face andn1, n2, n3 are the
normals of the triangles which are adjacent to the three face
edges. A good mesh must describe high curvature regions with
a high sampling rate.Qplan could be increased by sampling
the mesh at high rate, but this would generate huge size models
without enhancing the level of detail of low curvature regions.
A sampling rate proportional to local curvature is therefore
advisable.

Assuming the above 3D reconstruction process provides us
with the coordinates ofn points lying on a real surfaceΛ, the
points could be expressed asxi = yi + εi, whereyi are the
true values andεi are the measurement errors. We also havem
viewsVj of Λ, which can be considered as functions mapping
<3 in <2 through projective transformations. For each view
Vj we know the projectionPj = Vj(Λ) of the original surface
Λ, i.e. the set of points representing the silhouettes ofΛ. The
fusion problem of silhouettes and stereo matching information
concerns the estimate ofΛ from xi andPj .

Such a problem can be solved within a classical deformable
model framework [4] [11]. Namely, a surface is made to evolve

subject to three types of forces, an internal and two external
ones. The first one,Fint, keeps the surface as smooth as
possible, while the others,Ftex andFsil, make it to converge
to Λ. Formally, the evolution of the model at pointP can be
described as:

s (0) = s0 (3)

∂s

∂t
(t) (P ) = Fint (P, s) + Ftex (P ) + Fsil (P, s) (4)

wheres (t) is the estimate ofΛ at iterationt, s0 is the estimate
obtained through the shape-from-silhouette method, and

Fint (P, s) = ∇2s (P )−∇4s (P ) (5)

Ftex deformes the model in order to minimize its distance from
cloudxi; Fsil deformes the model in order to make it consistent
with silhouette information i.e.,Fsil tends to make the model
silhouettes as similar as possible to the acquired ones.

In [4] Ftex is expressed as the Gradient Vector Flow (GVF)
[17], obtained from point cloudxi with the aim of eliminating
the local minima arising when the surface reaches a boundary
concavity. This vector field is irrotational and so it can’t have a
variational origin, but its convergence is proved in [17].

As for Fsil, in [11] it is defined as follows:

Fsil (P ) =
m∑

j=1

fVj (P ) (6)

wherefVj (P ) is nonzero iffVj (P ) is external toPj or is
internal toPj and on the boundary ofVj (s) (that is, Vj (s)
is the silhouette ofs viewed fromVj). In this casefVj (P )
is the back-proiection of the 2D vector joiningVj (P ) with
the nearest point onVj (s) boundary. Hence the force is
nonzero only along the curves obtained by sectionings with
the retinal planes relative toVj and passing throughP . The
force field is therefore strongly discontinuous and can’t have
variational origin, i.e., it can’t be derived from the Eulero-
Lagrange equations of a minimum problem. As a consequence,
convergence to a model consistent with silhouette information
is not guarenteed. Moreover, the force is calculated as the sum
of terms separately computed on each silhouette.

In [4] Fsil is defined as

Fsil (P ) = α (P ) · dvh (P ) · n (P ) (7)

wheren (P ) is the normal to the surface inP anddvh (P ) is
the signed distance from the visual hull defined asdvh (P ) =
minj d (Vj (P ) , ∂Pj), where∂Pj is the boundary ofPj and
d (Vj (P ) , ∂Pj) is the signed distance between the projection
v of P viewed fromVj and∂Pj , positive whenv ∈ Pj and
otherwise negative.α (P ) can be expressed as

α (P ) =
{

1 ⇐⇒ dvh (P ) 6 0
1

(1+d(Vc(P ),∂Vc(s)))
k ⇐⇒ dvh (P ) > 0 (8)
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Figure 2: Left:Fsil of [4] can sometimes cause trouble; Right:
Fsil should move the vertex to a point as distant from boundary
∂Pj as the vertex is distant from∂Vj (s).

where c = arg minj d (Vj (P ) , ∂Pj) and ∂Vc (s) is the
boundary of the silhouette ofs viewed fromVc. The force
field is continuous, defined over the entire model with the
same direction and versus as the surface normal. Namely, the
boundary points are subject to a force equal (both in magnitude
and versus) to the distance vector from the visual hull. For the
points internal toVj (s) the force intensity is modulated by
α (P ) so as to be inversally proportional to their distance from
the boundary. In this way, the vertices can leave the visual hull
and enter the concavity opposing only a force decreasing by
α (P ) with respect to the distance from the boundary. Eq.(7)
avoids the difficulties arising from the sum of Eq.(6), however
it is affected by three problems, namely:

1. Fsil (P ) always acts along direction and verse of the
surface normal whenVj (P ) ∈ Pj for every j, even if
this means movingP away from the silhouette. See for
example the situation depicted in Fig.2Left, whereFsil

causes the model to intersect itself.

2. Fsil is proportional to the distance betweenVj (P ) and
∂Pj , even ifVj (P ) does not lie on the boundary ofVj (s).
In fact, in that case we would expect thatFsil movedP
to a point as distant from boundary∂Pj as the vertex is
distant from∂Vj (s) (see Fig.2Right).

3. Fsil still doesn’t have variational origin.

3 Problem reformulation and solution

Neither in [4] nor in [11] the proposed silhouette force has
a variational origin. Nevertheless, as in the case of classical
deformable models, we would like our model to be the
minimum point of a functionalξ defined as:

ξ (s) =
∫

s

kint · ξint + ktex · dΣ (P ) + ksil · ξsilds (9)

∂Vc(s) ∂Pc

v
g
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Figure 3: Representation of distances used to defineξsil.

ξint is the snake internal energy, which can be expressed as
ξmembrane + ξthin plate, with

ξmembrane = ‖∂su‖2 + ‖∂sv‖2 (10)

ξthin plate =
∥∥∂2suu

∥∥2
+

∥∥∂2svv

∥∥2
+ 2

∥∥∂2svu

∥∥2
(11)

dΣ (P ) is the distance betweenP and point cloudΣ defined as
[12]

dΣ (P ) = min {d (P, x) | ∀x ∈ Σ} (12)

Finally we defineξsil as

ξsil = Sc (Vc (P )) (13)

where Vc (P ) is the projection ofP onto the image plane
of view Vc, c = arg minj d (Vj (P ) , ∂Pj); d (v, ∂Pj) is the
signed distance betweenv and∂Pj , which is positive ifv ∈ Pj

or else negative;Sc (v) is defined as:

Sc (v) =
{

1
2d (v, ∂Pc)

2
v /∈ Pc

(d (v, ∂Pc)− g) · h (g) v ∈ Pc
(14)

with g distance betweenv and the point whereVc (s) intersects
the segment joiningv and its nearest point on∂Pc (the one
used to compute distanced (v, ∂Pc)) (see Fig.3); Function
(d (v, ∂Pc)− g) is the distance between∂Vc (s) and∂Pc along
the above mentioned segment. This value is constant for all the
points lying on the extension of such segment to the nearest
boundary. Weighth (g) is a nondecreasing function assigning
greater weights to the points internal toVc (s) but external to
Pc:

h (x) =
{
− 1

2px2 + x + 1 0 6 x 6 p
p
2 + 1 x > p

(15)

The cost of the points whose projection lies on the boundary of
Vc (s) is porportional to its distance from the boundary ofPc:
the deeper we get inVc (s), the greater the point costs, until an
upper bound set byh (x) is reached. This procedure penalizes
all the surfaces with projections within the projections ofΛ.
The points ofs with projection alongVc external toPc have a
cost which is half their squared distance from boundary∂Pc.
In this way all the surfaces with one projection including the
projections ofΛ are penalized.

Let’s now prove that



Theorem 1 ξsil (s) = 0 iff Vj (s) = Pj , ∀j = 1, . . . m.

Proof. (⇐) If Vj (s) = Pj , ∀j = 1, . . . m then∂Vj (s) =
∂Pj , so(d (v, ∂Pc)− g) = 0, that is the distance between the
boundaries is zero. Moreover, for eachv ∈ Vc (s) we have that
v ∈ Pc and thereforeSc (v) = (d (v, ∂Pc)− g) · h (g) = 0;
as a consequence,ξsil (s) = 0. (⇒) If ξsil (s) = 0, being
the integral of a positive functionSc (Vc (P )) has to be null
for eachP ∈ s. Therefore,v = Vc (P ) must belong toPc,
otherwise this would implySc (Vc (P )) 6= 0 for oneP . Being
v ∈ Pc, we have(d (v, ∂Pc)− g) · h (g) = 0. h (g) is always
strictly positive, so(d (v, ∂Pc)− g) must be0. This means
the distance between the boundaries is zero, i.e.∂Vc (s) =
∂Pc. Having chosenc = arg minj d (Vj (P ) , ∂Pj), we obtain
∂Vj (s) = ∂Pj ∀j = 1, . . . m. If the boundaries are equal, then
their relative surfaces are equal too and thereforeVj (s) = Pj ,
∀j = 1, . . . m.

A solution of Eq.(9) can be found by first computing the
Eulero-Lagrange equations forξ (s) and then by solving them
through a gradient descent method. Obviously the opposite
of the gradient represents the forces deforming the surface.
Namely, the internal forces will be calculated as the laplacian
and bilaplacian ofs. We have preferred the solution proposed
in [4] for the texture forces because it solves the problems
concerning the local minima.

As for the computation of the silhouette force applied to the
vertexv of the mesh, two cases must be distinguished. When
Vc (v) /∈ Pc, the force is a vector applied tov and directed
towards the nearest point on∂Pc with intensityd (v, ∂Pc). As
for every other silhouette force, this force lies on the retinal
plane passing throughv. On the contrary, ifVc (v) ∈ Pc then

∇Sc (v) = (d (v, ∂Pc)− g) · h′ (g) (16)

This is because∇ (d (v, ∂Pc)− g) = ∇d (v, ∂Pc)−∇g is null
as∇d (v, ∂Pc) and∇g are parallel versors. Weighth′ (x) can
be written as

h′ (x) =
{
− 1

px + 1 0 6 x 6 p

0 x > p
(17)

In this way the force is defined just for the points with distance
from the boundary∂Vc (s) at most equal top. Moreover, it is
directed towards the nearest point of∂Pc with intensity

(d (v, ∂Pc)− g)
(

1− 1
p
g

)
(18)

proportional to the distance between the two boundaries.
The force decreases with the distance from the boundary of
Vc (s), until it becomes zero at distancep. The intensity of
the points belonging to∂Vc (P ) is instead always equal to
(d (v, ∂Pc)− g).

In our approachFsil is not bound to have the same verse
and direction as the surface normal, instead it moves as the

Figure 4: Picture of a frog.

silhouette would have to do in order to fit the data. This
property is guarenteed because the force is generated as a
gradient. Moreover,Fsil tends to movev to a point as distant
from the boundary∂Pj as the vertex is distant from∂Vj (s)
(see Fig.2Right).

Furthermore it is worth nothing that the computation is simpler
than in the case of [4], [11]. This is rather relevant since the
calculation of the silhouette force is a bottle-neck during model
evolution. In order to speed up the computation ofd (v, ∂Pc)
we use a kd-tree [1] a priori built on every∂Pj . In order to
calculateVj (s), s was rendered by means ofOpenGllibraries
[6]. Finally, the computation ofg is trivial as it amounts
to counting the number of pixels internal toVc (s) along the
segment joiningVc (v) to its nearest point on∂Pc. Therefore
one just needs to draw a segment and to find its intersection
with Vc (s).

Let’s note that in [4], [11] after every rendering a further
distance map needs to be calculated in order to compute
the distanced (v, ∂Vc (s)), consequently increasing the time
complexity of the algorithm.

4 Refinement

The results obtained by the method proposed in section 3 are
rather good as concerns parametric and geometric quality, as
shown by Fig.5. However, in this formulation the final model
is bound to have a parametrization similar to an isometry, i.e.,
to be uniformly sampled. Namely, this is due to the use of
functionalξmembrane. However, as mentioned before, a good
quality mesh should be sampled proportionally to its local
curvature while in deformable models the sampling rate is
fixed. In this case some regions could be undersampled and
others oversampled, with consequent poor mesh quality or too
large model sizes, respectively.

In order to solve this problem we defined a second phase
of evolution, to be started after the model reaches adequate



Figure 5: Frog model reconstructed using snakes and relative
histogram ofQequ.

convergence toΛ. A selective subdivision of the model based
on local curvature is first needed. The model will then evolve
so as to minimize a second functionalξ′ equal toξ exept for
its internal energy. Intuitively, we could think of setting the
latter equal toξthin plate; unfortunately, as shown in Fig.6, this
would not lead to a correct description of the curvature of a
multiresolution mesh, which is our case. Therefore, we choose
to use another functional

ξint = κ (19)

where κ represents the mean curvature of the surface.
As shown in Fig.6, ξint is independent of the chosen
parametrization. As stated in [3], the relative forceFint is
equal to−κn, wheren is the surface normal; see [3] for a
numerical implementation.

In this way only the surface geometrical properties are
changed, while the parametrization chosen through subdivision
is untouched. We thus obtain a sampling which respects
compactness and geometrical quality of the mesh. The
resolution enhancement allows us to capture details of the
original model in high curvature regions (see Fig.9). In the
formulation of [4] this would have been impossible, as it would
imply a prohibitive model size.

Figure 6: Comparison betweenEthin plate and mean curvature:
(A) intensity; (B) effects on the model.

Figure 7: Comparison between the proposed method (Right)
and a stereo-based method (Left).

Figure 8: Picture of Buddha.



Figure 9: The resolution enhancement allows us to capture
details of the original model in high curvature regions. Left:
model of Buddha of Fig.8 obtained using classical deformable
models. Right: the same model obtained using variable
sampling rate.

5 Experimental results

Tests were performed both on real and synthetic models. The
acquisition system of the first ones consisted in a rotating
table and a fixed camera. The object was positioned on the
table while the software controlled table rotation and picture
shooting. The pictures of the synthetic models were generated
by a rendering software. The model was framed byn 43mm
target cameras. The rendering was supervisioned by a script
which also calculated the relative projection matrices.

We compared the results obtained by the proposed method
with those obtained by a stereo-based methods. We recall
that the latter utilizes only information coming from a stereo
matching algorithm, building a 3D view from each pair of
images. The final mesh is then generated by aligning the 3D
views and by averaging the overlapping regions. Differently
from stereo-based procedures, our method produces closed
surfaces which are manifolds and which can be shown to be
both geometrically and parametrically regular (see Fig.5).
Parametric regularity can be appreciated by comparing
histograms ofQequ frequencies as in Fig.10. Moreover, we
observed that silhouette information compensates for the lack
of texture information and enhances the level of details in
regions where texture is present. This property comes from the
fact that intrinsic error of silhouette information is remarkably
smaller than texture error. We also found that silhouette
information corrects matching errors.

Reconstruction error was evaluated on a synthetic
120x200x260 mm3 model shown in Fig.11. The model
was acquired at50cm distance with a1024x768 pixel spatial
resolution and a field of view of35◦. Having both the original
and the reconstructed model, we finally estimated the average
and maximun distance between the two surfaces. In our case
we obtaineddaverage = 0, 82 mm (0, 2 on the diameter) with
a0, 62 mm2 variance anddmax = 9, 6mm.

Figure 10: Comparison between histograms ofQequ for the
proposed method (Below) and a stereo-based method (Above).

Figure 11: Sinthetic model used to evaluate the reconstruction
error of our system.



6 Conclusions

This paper reformulates a 3D passive multimodal digitization
scheme using both texture and silhouette information
improving upon its formulation. As demonstrated by tests,
the proposed system maintains the properties typical of both
passive techniques. Indeed, it can be proved to be resilient
to measurement errors and capable of reconstructing a wide
range of objects such as those featuring:

• Surfaces characterized by good quality texture, sufficient
lighting and not too high a specular reflectance (we
recall that stereo-based methods completely fail to acquire
object even with minimal specular reflectance);

• Specular surfaces without texture or with a periodical
texture, provided that the pictures take the profile of
such surfaces (information in this case comes from the
silhouettes);

• Concavities characterized by good texture and sufficient
lighting.

The proposed method still doesn’t allow the reconstruction of
reflecting or transparent regions, nor the modelling of objects
not exhibiting the above mentioned features.

The obtained results prove that the deformable model approach
leads to a feasible minimum problem with respect to mesh
quality. Indeed, the proposed approach gives aclosed regular
manifold with a regular parametrization, unlike stereo-based
methods where neither the manifold nor the closure hypothesis
generally hold.

Furthermore, the reconstruction error is rather satisfactory. For
instance, the surface reconstructed from 1024x768 pictures
taken from 50cm distance is affected by an average error of
0,8mm. Such an error can be remarkably reduced using digital
cameras of higher resolution.

The main contributions of this paper can be summarized
as follows: a reformulation of the silhouette-stereo fusion
problem first proposed in [4]; the definition of a new silhouette
force of variational origin which, differently from the one
defined in [4] and [11], proves to be coherent with the adopted
problem formulation and of faster and simpler computability
(moreover, the force represents an index of convergence of
the model to the original surfaces and it enhances the method
robustness); the definition of a second stage of evolution
involving only the surface geometrical properties in order to
minimize the mean curvatureκds, which eliminates the fixed
sampling bound implied by the use of deformable models and
obtains good quality meshes without affecting the model size.

Further research will concern the combination of other passive
methods together with silhouettes and stereo. Current work

attempts to incorporate in the method theshadow-carving[15].
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