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12.1 Introduction

The possibility of obtaining 3D models, i.e., mathematical descriptions of

real objects or scenes has paved the way to a wide range of new and ex-

citing applications in fields such as virtual simulation, human-computer

interaction (HCI), scientific visualization, cultural heritage documenta-

tion, medicine, industrial prototyping, reverse engineering, entertainment

(movies and video games), web-based commerce and marketing, just to

name a few.

The construction of the 3D model of a real object or scene by optical

sensors, also referred to as 3D modeling pipeline, essentially consists of four

steps: 1) data acquisition, 2) calibration, 3) reconstruction, and 4) model

editing. Any optical sensing device used to collect data can only capture the

surface front side and not what is occluded by it. Therefore, a full model

must be built from a number of images covering the entire object (data ac-

quisition). In order to perform 3D reconstruction, the camera’s parameters

must be estimated by a procedure called calibration. Such information can

also be obtained from the acquired images if they represent some common

regions (by a procedure which is typically called self-calibration). Recon-

struction is then performed and the resulting model is stored in an efficient

description such as polygonal meshes, implicit surfaces, depth maps or vol-

umetric descriptions. In practical situations, reconstruction may lead to

1
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models with some imperfections; thus, a further repairing step is recom-

mend (model editing) [Davis et al. (2002); Levoy et al. (2000)].

Optical 3D reconstruction methods can be classified into passive or ac-

tive methods based on the type of sensors used in the acquisition process.

Passive sensing refers to the measurement of the visible radiation which is

already present in the scene; active sensing refers instead, to the projection

of structured light patterns into the scene to scan. Active sensing facilitates

the computation of 3D structure by intrinsically solving the correspondence

problem which is one of the major issues with some passive techniques. For

a detailed description of the operations of the 3D modeling pipeline by ac-

tive sensing see [Rushmeier and Bernardini (2002); Rioux et al. (2000)]. In

general, active techniques such as those based on laser scanning tend to be

more expensive and slower than their passive counterparts. However, the

best active methods generally produce more accurate 3D reconstructions

than those obtained by any passive technique.

Passive optical methods, as previously mentioned, do not need auxil-

iary light sources. In this case, the light reflected by the surface of the

object comes from natural sources, that is, sources whose characteristics

are generally unknown and in most cases, not controllable by the acquisi-

tion process. Furthermore, passive methods do not interact in any way with

the observed object, not even with irradiation. Passive reconstruction, in

principle, can use any kind of pictures, i.e., it does not need pictures taken

for 3D reconstruction purposes (even holiday photographs could be used).

Passive methods are more robust than their active counterparts, can cap-

ture a wider range of objects, can be obtained by inexpensive hardware

(such as a simple digital camera) and are characterized by fast acquisition

times. Such features are the reason for the attention they received and

they continue to receive. Their drawbacks concern accuracy and compu-

tational costs. Indeed, passive reconstruction algorithms are complex and

time-consuming. Moreover, since their acquisition scenarios are often far

from the ideal conditions, noise level is typically much higher than that of

active methods which tend to guarantee optimal conditions.

Passive optical methods are classified by the types of visual cues used

for 3D reconstruction. For this reasons, they are also called “Shape from

X” (SfX) techniques, where X stands for the cue or the cues used to infer

shape. Methods which deal with one single type of visual cue are called mo-

nomodal whereas methods jointly exploiting information of different types

are called multimodal. The simultaneous use of different cues, in principle,

is clearly more powerful than the use of a single one; however, this poses
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Fig. 12.1 Overview of existing passive optical methods.

the challenge of how to synergistically fuse different information avoiding

mutual conflicts.

Figure 12.1 proposes a taxonomy of the passive optical methods. Typi-

cal information used for reconstruction are:

• Silhouette or apparent contour;

• Shading;

• Shadow;

• Focusing;

• Pictures differences, i.e., stereo information;

• Texture;

• Motion;

This chapter reviews 3D reconstruction by passive optical methods.

This is not an easy task in light of the broad scope of the topic. The

spirit we adopted is to give a conceptual outline of the field, referring the

reader to the literature for details. We also reserve special attention to

recent methods. Section 12.2 introduces basic concepts and terminology

about the image formation process. Section 12.3 reviews major monomodal

methods: shape from silhouette, shape from shading, shape from shadows,

shape from focus/defocus and shape from stereo. In Section 12.4 we in-

troduce a framework for multimodal methods, focusing on the deformable

model technique. Finally, Section 12.5 draws the conclusions.
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12.2 Basic notation and calibrated images

A calibrated image is an image for which all the parameters of the camera

used to take it are known. Formally, a calibrated image is an ordered pair

(I, ζ) where I is an image and ζ is an image formation function ℜ3 → ℜ2

that maps the points from the physical 3D world to the image plane. An

image is a function from a rectangular subset of ℜ2 representing the image

space coordinates to an interval of ℜ representing the image intensity values.

In this section, the image formation process is approximated using the ideal

pinhole camera model (see Fig. 12.2) with lens distortion. This means that

neither the effects due to finite aperture nor other types of lens aberrations

are considered. In this case, ζ can be expressed as the combination of two

functions, namely

ζ = ϕ ◦ V (12.1)

where ϕ : ℜ2 → ℜ2 is a nonlinear bijection representing the camera lens

distortion and V is a function ℜ3 → ℜ2, called view, incorporating both

the pinhole model and the camera point of view information. Function V

is a combination of two further functions, i.e., V = π ◦T . Function π is the

pinhole perspective projection1 simply defined as π (x, y, z) =
(
x
z ,

y
z

)
for all

point P = (x, y, z) in ℜ3 with z > 0. Function T : ℜ3 → ℜ3 is an affine bi-

jective transformation which performs 3D coordinates transformation from

the world space to the camera space. Let us note that, given a calibrated

image (I, ζ), one can always find its non-distorted version (I ◦ ϕ, V ) by

estimating camera lens distortion parameters ϕ from image I. This is a

classical inverse problem for which a vast literature is available. Popular

methods are due to [Tsai (1987)] which estimates ϕ using known calibra-

tion patterns and to [Prescott and McLean (1997)] which use the knowledge

that the image represents straight lines of the scene.

Projective Geometry is a powerful framework for describing the image

formation process, not adopted in this chapter for reasons of simplicity.

Interested readers are referred to [Hartley and Zisserman (2000)] for an

excellent introduction.

By definition, transformation T can be written as

T (P ) =M · P +O (12.2)

where M is an invertible 3x3 matrix and O,P ∈ ℜ3. Furthermore, M

and O form to the so-called projection matrix K, a 3x4 matrix defined as
1This model was first proposed by Brunelleschi at the beginning of the 15th century.
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follows

K =
[
M O

]
(12.3)

Projection matrix K is related to the physical model of the ideal pinhole

camera and can be decomposed according to the following scheme

K = I ×

1 0 0 0

0 1 0 0

0 0 1 0

× E (12.4)

where I is the intrinsic matrix, depending on the so-called intrinsic param-

eters only due to the camera internal characteristics, and E is the extrinsic

matrix, depending on the so-called extrinsic parameters only due to the

camera position and orientation in the space. Namely, matrix I is defined

as follows

I =


f
px

(tanα)f
py

cx

0 f
py

cy

0 0 1

 (12.5)

where f (expressed in millimeters) is the camera focal length, that is the

distance between the sensor surface (also known as retinal plane or image

plane) and pinhole C (also known as center of projection); px, py respec-

tively are the width and the height in millimeters of a single pixel on the

retinal plane; α is the skew angle, measuring how much the image axes x

and y are away from orthogonality; c = (cx, cy, 1) is the principal point

of the camera, i.e., the point at which the optical axis intersects the reti-

nal plane. We recall that the optical axis is the line, orthogonal to the

retinal plane, passing through the center of projection C. Another useful

parameter is the camera field-of-view along the y axis defined as

FOVy = 2arctan

(
py Ny
2f

)
(12.6)

where Ny is the vertical resolution of the sensor. Figure 12.2(above) shows

the ideal pinhole camera. Rays of light pass through the pinhole and form

an inverted image of the object on the sensor plane. Figure 12.2(below)

shows an equivalent pinhole model where the image plane is placed in front

of the center of projection obtaining a non-inverted image.

Matrix E is defined as

E =

[
R tT

0 1

]
(12.7)
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Fig. 12.2 Ideal pinhole camera (above) and its equivalent model (below) where the
image plane is placed in front of the center of projection.

where R is 3x3 rotation matrix and t is a vector belonging to ℜ3. For

example, given a camera with center of projection C, optical axis D and

up-vector U (that is the y axis of the camera reference system), the relative

extrinsic matrix is:

E =

[
B−1 −B−1CT

0 1

]
(12.8)

where:

B =
[
(U ×D)

T
UT DT

]
(12.9)

The center of projection C = (Xc, Yc, Zc) can be obtained from the
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columns of projection matrix K =
[
k1 k2 k3 k4

]
as follows

Xc =
det
([
k2 k3 k4

])
Q

(12.10)

Yc = −
det
([
k1 k3 k4

])
Q

(12.11)

Zc =
det
([
k1 k2 k4

])
Q

(12.12)

where:

Q = −det
([
k1 k2 k3

])
(12.13)

In order to extract 3D information from a set of images, the related

view functions must be estimated for each image of this set. This can be

done in two ways: conventional calibration or self-calibration. The first

approach uses pictures imaging a known target object such as a planar

checkerboard. In this case, function V can be estimated by solving an over-

constrained linear system [Hartley and Zisserman (2000)]. Self-calibration

instead, computes the view functions associated to a set of un-calibrated

images without any information about the scene or any object in it. These

methods, see for instance [Mendoca and Cipolla (1999)], essentially extract

relevant features from two or more images then, find the matching between

them and finally, proceed like conventional calibration methods.

12.3 Monomodal methods

This section introduces the most common monomodal methods namely,

the methods using silhouette, shading, shadow, focus and stereo as 3D

reconstruction information. Texture and motion are excluded from this

analysis, however the interested reader is referred to [Forsyth (2002)] and

[Jebara et al. (1999)] for an example of these two techniques.

12.3.1 Silhouette

Algorithms which reconstruct 3D objects using only silhouette information

extracted from a set of images are called “Shape from Silhouette” methods.

They were first proposed in [Baumgart (1974)] and afterwards formalized

in [Laurentini (1994)], where the concept of visual hull was first introduced.

All these methods must face the problem of extracting silhouette infor-

mation from the set of images. In other words, in each picture, they must
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identify the points belonging to the object to be acquired with respect to the

background. This problem does not have a general solution as it strongly

depends on the scene characteristics. The most common approaches to this

task are chroma keying (e.g., blue screen matting [Chuang et al. (2001)]),

background subtraction [Piccardi (2004)], clustering [Potmesil (1990)] and

many other segmentation techniques. For a comprehensive account see

[Lucchese and Mitra (2001)]. However, silhouette information is affected

by two types of error. The first one is the quantization error due to image

resolution and it is directly proportional to the camera-object distance z as

εx =
px
2f
z, εy =

py
2f
z (12.14)

The second one depends on the specific silhouette extraction method and

its amount is usually confined within ±1 pixel.

In order to recall the concept of visual hull, some definitions related to

the notion of contour may be useful. Given a view V and a closed surface

M in ℜ3, let us denote by V (M) the projection (or the silhouette) of M

on the image plane of V , i.e., the shape of M viewed by V , and by

γVM = ∂V (M) (12.15)

the apparent contour of M viewed by V , and by

ΓVM = V −1
(
γVM
)

(12.16)

the 3D contour of M viewed by V .

By definition V (M) is a set of points in ℜ2 and its boundary γVM is a set of

curves in ℜ2 which do not intersect each other. As we can easily see with

the aid of Figure 12.3, neither V (M) nor γVM are generally regular. Indeed,

it is likely that they have some singularities. On the contrary, ΓVM is a set

of not necessarily closed curves in ℜ3, with points belonging to M .

Shape from silhouette methods use V (M) as source of information.

However, there exists a class of methods, called “Shape from Contour”

[Cipolla and P.Giblin (2000)], that use the apparent contour γVM instead of

V (M) in order to infer shape.

The concept of visual hull [Laurentini (1994)] is a fundamental definition

for the shape from silhouette methods.

Definition 12.1. Given a set of viewsR = (V1, . . . , Vn) and a closed surface

M in ℜ3, the visual hull of M with respect to R, denoted as vh (M,R),

is the set of points of ℜ3 such that P ∈ vh (M,R) if and only if for every

view Vi ∈ R, the half-line starting from the center of projection of Vi and

passing through P , contains at least one point of M .
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Fig. 12.3 M is a 3D object. V (M) represents the silhouette of M , γVM its apparent

contour and ΓVM its 3D contour. In the figure, ΓVM is slightly rotated with respect to
the point of view of the other three pictures in order to evidence that ΓVM is a set of not
necessarily closed 3D curves.

In other words, the visual hull of a surface M related to a set of views

R is the set of all points in the 3D space which are classified as belonging

to the object for every view Vi ∈ R. Laurentini proved that the boundary

of the visual hull ∂vh (M,R) is the best approximation of M that can be

obtained using only silhouette information coming from the projections of

M in each view of R. Some implications of this result follow:

• the visual hull always includes the original surface, i.e., M ⊆ vh (M,R),

or in other words, the visual hull is an upper-bound of the original object;

• ∂vh (M,R) and M have the same projections in R, in other words for

every V ∈ R, we have:

V (M) = V (∂vh (M,R)) (12.17)

• If R1 ⊆ R2 then vh (M,R2) ⊆ vh (M,R1)

• vh (M,R) =
∩
V ∈R vh (M, {V })

The last property suggests a method for computing the visual hull as the

intersection of the visual cones vh (M, {V }) generated by M for every view

V ∈ R (see Fig. 12.4). A visual cone vh (M, {V }) is formed by all the

half-lines starting from the center of projection of V and intersecting the

projection of M on the image plane of V .

All shape from silhouette methods are based on the above principle.

They can be classified by the way the visual hull is internally represented,
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Fig. 12.4 Computation of the visual hull as intersection of the visual cones generated

by V1 and V2.

namely by voxels or by polyhedra. The former class, called “Volume Carv-

ing” algorithms [Potmesil (1987)], was the first to be proposed. The idea

behind it is to divide space into cubic elements of various sizes, called voxels,

in order to store volume information of the reconstructed object. The latter

class of algorithms, recently formulated in [Matusik et al. (2001)], repre-

sents the boundary of the reconstructed visual hull by polygonal meshes.

They are proposed for real-time applications aimed at acquiring, trans-

mitting and rendering dynamic geometry. Indeed, polyhedral visual hull

can be rapidly computed and rendered using the projective texture map-

ping feature of modern graphics cards [Li et al. (2003)]. Besides, polyhedral

representations give exact estimations of the visual hulls avoiding the quan-

tization and the aliasing artifacts typical of the voxel approach. However,

voxel representations are preferred when the result of shape from silhouette

is used as first approximation to be refined by other reconstruction algo-

rithms such as shadow carving (see Section 12.3.3) and some multimodal

methods (see Section 12.4).

For this reason the remaining of this section focuses on the volume carv-

ing algorithms. In this case, the 3D space is divided into voxels which can

bear three types of relationship with respect to the visual hull: “belong”,
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Fig. 12.5 (a) Space subdivision by an octree. (b) Example of surface M for which
its external visual hull has genus lower than the genus of M . The visual hull cannot

completely describe the topology of this surface.

“partially belong” or “not belong”. In order to verify such characteristics

one must check if a voxel completely belongs to every visual cone2. In this

case the voxel belongs to the visual hull of M . Otherwise, if the voxel is

completely outside at least one visual cone, then it does not belong to the

visual hull. In any other case, the voxel partially belongs and one must fur-

ther subdivide it and repeat the check with respect to its sub-voxels until

the desired resolution is reached.

Data structures like octrees [de Berg et al. (1999)] allow for a fast space

subdivision and reduce the memory requirements. An octree is a tree where

each internal node has 8 children. Every node j is associated with a cube

B such that the set of the cubes associated to each child of j is an equipar-

tition of B. The root of the tree represents the whole space under analysis,

which is divided into 8 cubes of equal size as shown in Fig. 12.5(a). Each

of these cubes can be again subdivided into 8 further cubes or alternatively

be a leaf of the tree. The possibility of arbitrarily stopping the subdivision

is the key characteristic of octrees. In fact, octrees can optimize memory

requirements since they allow to describe volumes by a multi-resolution

grid where detailed regions are described at resolutions higher than those

in uniform regions.

Finally, in order to find a polygonal mesh representation of the boundary of

the estimated volume, one may resort to the “marching cubes” algorithm

[Cline and Lorensen (1987)]. Figure 12.6 shows an example of a model

obtained by a volume carving algorithm.

Let us observe that given the set of all possible views whose centers of
2Observe that, since voxels are cubes, one can determine whether all their points belong

to a visual cone only by checking the eight vertices of the cube.
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Fig. 12.6 Model obtained by volume carving algorithm.

projection are outside the convex hull of M , the relative visual hull, called

vh∞ (M), is in general not equal to M . In fact, vh∞ (M) cannot describe

the concave regions of M which are not visible from viewpoints outside

the convex hull of M . As a consequence, in general, the visual hull cannot

completely capture the topology of a surface. vh∞ (M) is called the external

visual hull and it is a subset of the convex hull of M . Figure 12.5(b) shows

an object for which its external visual hull has genus lower than that of the

original surface.

In conclusion, shape from silhouette algorithms are fast and robust but

can only reconstruct a small set of objects, i.e., those objects the visual

hulls of which, related to the available views, are similar to their surfaces.

12.3.2 Shading

Shading information is used in both photometric stereo and shape from

shading algorithms. The former operates with a series of pictures of the

object taken under different lighting conditions. The latter instead, recovers

the surface shape from the brightness of a single picture.
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Both methods rest on approximations of the reflectance characteristics

of the object to be reconstructed, that are the relationships between incom-

ing illumination to a point on the surface and the light reflected by it. For

this reason, it may be useful to recall some radiometric definitions.

Light power is the amount of light energy per unit time, measured

in Watt [W ]. The outgoing radiance at surface point P in the direction

ωo = (θo, ϕo) (where θo and ϕo are the two angles defining direction ωo) is

the light power per unit area perpendicular to ωo emitted at P in the unit

solid angle of direction ωo. Such a radiance is denoted as Lo (P, ωo) where

the subscript o denotes that it is an outgoing radiance. It is measured

in [W ][m]−2[sr]−1, where Steradian [sr] is the unit of solid angle. On the

other hand, the incoming radiance Li (P, ωi) at surface point P in direction

ωi = (θi, ϕi) is the incident light power at P per unit area perpendicular to

ωi in the unit solid angle of direction ωi. Note that, if the surface normal at

P forms an angle β with respect to direction ωi, the infinitesimal area dA

centered at P seen from the direction ωi is dA cos (β). Therefore, the incom-

ing light power per unit area contributed to P by the light sources through

the infinitesimal solid angle dω of direction ωi, is Li (P, ωi) cos (β) dω. This

quantity is called incident irradiance at surface point P in the direction ωi
and it is measured in [W ][m]−2.

The bidirectional reflectance distribution function (BRDF) was intro-

duced in [Nicodemus (1970)] as a unified notation of reflectance in terms of

incident and reflected beam geometry. It is defined as the ratio between the

outgoing radiance at surface point P in the direction ωo and the incident

irradiance at P in the direction ωi, i.e.,

fr (P, ωo, ωi) =
Lo (P, ωo)

Li (P, ωi) cos (β) dω
(12.18)

and it is measured in [sr]−1.

The actual BRDF of an object is usually a very complex function and

it is difficult to estimate in practical situations, therefore a number of ap-

proximations are used instead. For example, Lambertian (or ideal diffuse)

surfaces, i.e., surfaces that reflect light equally in all directions, lead to a

strong simplification namely, they have a constant BRDF

fr (P, ωo, ωi) = ρ (P ) (12.19)

where ρ is called the albedo or the diffuse reflectance of the object. Models

for partially specular surfaces were developed by Torrance-Sparrow [Tor-

rance and Sparrow (1967)], Phong [Phong (1975)] and Blinn [Blinn (1977)].

The last two models are widely used in computer graphics.
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The algorithms described in this section consider only Lambertian sur-

faces and local shading models; thus, neither specularity nor interreflections

are considered. However, state of the art of photometric stereo and shape

from shading algorithms make use of more general BRDF models such as

the simplified Torrance-Sparrow model used in [Healey and Binford (1988)].

Some definitions used in both types of algorithms are in order. Let M

be the unknown surface in ℜ3 and let I (x, y) be the image intensity seen

by a view V . If the surface point P ∈ M is visible from the viewpoint V

then I (V (P )) is its brightness. Clearly, I (V (P )) is proportional to the

outgoing radiance leaving P in direction of the center of projection of V .

Therefore, for Lambertian objects illuminated by a single point light source,

one can write

Lo (P, ωo) = ρ (P )Li (P, ωi) cos (β) (12.20)

thus,

I (V (P )) = ρ (P ) l (P )L (P ) ·N (P ) (12.21)

where l (P ) and L (P ) are respectively, intensity and direction of the inci-

dent light at P , ρ (P ) is the surface albedo at P and N (P ) is the surface

normal.

12.3.2.1 Photometric stereo

Photometric stereo was first introduced in [Woodham (1980)]. Given a set

of calibrated images (I1, V ) , . . . , (In, V ) taken from the same point of view

V but under different lightings L1, . . . , Ln, one can estimate surface normal

N (P ) for every visible point of M . Let

I (x, y) = [I1 (x, y) , . . . , In (x, y)] (12.22)

be the vector of all measured brightness at image point (x, y) = V (P ), for

any visible point P of M , and let

L (x, y) =

 l1 (P )L1 (P )
...

ln (P )Ln (P )

 (12.23)

be the matrix of all light directions and intensities incident at P . From

Eq. (12.21), one may write

IT (x, y) = ρ (P )L (x, y)×NT (P ) (12.24)
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which is a linear system of n equations in the three unknowns ρ (P )N (P ) 3.

Eq. (12.24) has a unique solution when n > 3 and it can be solved using

least square methods.

Once the values of ρ (P )N (P ) are available for each visible point P ,

one can extract the surface albedo and the normal at P using ρ (P ) =

∥ρ (P )N (P )∥ and N (P ) = ρ (P )N (P ) / ∥ρ (P )N (P )∥ respectively. Re-

trieving shape from normals is trivial under the assumption that the view

V performs an orthographic projection. Indeed, let us represent M by a

Monge patch description, i.e.,

M = {(x, y, z (x, y)) | ∀ (x, y)} (12.25)

where z (x, y) is the surface depth at (x, y). Consequently, the surface

normal at P = V −1 (x, y) = (x, y, z (x, y)) is

N (P ) =
(∂zx, ∂zy,−1)√
1 + ∂z2x + ∂z2y

(12.26)

where (∂zx, ∂zy) are the partial derivatives of z (x, y) with respect to x

and y. (∂zx, ∂zy) can be recovered from N (P ) = (Nx (P ) , Ny (P ) , Nz (P ))

using the following

(∂zx, ∂zy) (P ) =

(
−Nx (P )
Nz (P )

,−Ny (P )
Nz (P )

)
(12.27)

Surface M can be finally reconstructed by integrating a one-form:

z (x, y) = z (x0, y0) +

∫
γ

(∂zxdx+ ∂zydy) (12.28)

where γ is a planar curve starting at (x0, y0) and ending at (x, y).

(x0, y0, z (x0, y0)) is a generic surface point of known height z (x0, y0).

Clearly, if z (x0, y0) is unknown, the result will be the actual surface up

to some constant depth error.

Unfortunately, errors in surface normal measurements can propagate

along the curve γ generating unreliable solutions. For this reason, [Vega

(1991)] suggests an alternative height recovery method based on local in-

formation only. The more general case where V performs a perspective

projection is treated in [Tankus and Kiryati (2005)].

3ρ (P )N (P ) has only three degrees of freedom because N (P ) is assumed to be nor-
malized.
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12.3.2.2 Shape from shading

Shape from shading algorithm operates only on a single image I, there-

fore for each image point (x, y) = V (P ), we have one equation in three

unknowns

I (x, y) = ρ (P ) l (P )L (P ) ·N (P ) (12.29)

which cannot be solved without imposing additional constraints.

The first attempt to solve Eq. (12.29) was done by Horn in his PhD

thesis [Horn (1970)]. Since then, many other solution approaches were

developed typically classified into: minimization approaches, propagation

approaches, local approaches and linear approaches. For an extensive de-

scription of all these methods the reader is referred to [Zhang et al. (1999)].

In this chapter we only introduce the minimization approach suggested

in [Ikeuchi and Horn (1981)]. Ikeuchi and Horn reformulated the solution

of Eq. (12.29) as the minimization of a cost functional ξ defined as

ξ(M) = Bc (M) + λ · Sc (M) (12.30)

where Bc (M) is the brightness constraint and Sc (M) is the smoothness

constraint. The former measures the the total brightness error of the re-

constructed image compared with the input image, namely

Bc (M) =

∫ ∫ (
I (x, y)− I (x, y)

)2
dxdy (12.31)

where I (x, y) is the input image and I (x, y) is the image related to the

estimated surface M .

Cost functional Sc (M) penalizes non-smooth surfaces, reducing the degrees

of freedom of Eq. (12.29). It is defined as

Sc (M) =

∫ ∫ (∥∥∥∥∂N∂x (x, y)

∥∥∥∥2 + ∥∥∥∥∂N∂y (x, y)

∥∥∥∥2
)
dxdy (12.32)

Constant λ controls surface smoothness.

In this formulation, ρ (P ) is assumed to be known for all P ∈ M thus,

one can add another constraint which imposes normals to be unit. This is

what Brooks and Horn did in 1985. The new term was named unit normal

constraint and it was defined as follows∫ ∫ (
1− ∥N (x, y)∥2

)
dxdy (12.33)

The numerical solution is typical achieved using gradient descent al-

gorithms on the Euler-Lagrange equation related to Eq. (12.30) (see Sec-

tion 12.4.1 for additional information).
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Fig. 12.7 An example of the concave/convex ambiguity: it seems that this two images
represent two different objects, a concave and a convex one. Nevertheless, the first image

is a rotated version of the second one.

12.3.2.3 Estimating the light source properties

It can be proven that both photometric stereo and shape from shading be-

come ill-posed problems if light direction, intensity and surface albedo are

unknown. This means that a solution may not be unique and it strongly

depends on these three parameters4. The so-called concave/convex ambigu-

ity, occurring when light orientation is unknown, is a clear example of this

ill-posed characteristic. The concave/convex ambiguity refers to the fact

that, the same image seems to describe two different objects, one concave

and the other convex as shown in Fig. 12.7.

More generally, [Belhumeur et al. (1997)] showed that a surface

(x, y, z (x, y)) is indistinguishable from its “generalized bas-relief” (GBR)

transformation, defined as

z (x, y) = λz (x, y) + µx+ νy (12.34)

if its albedo and the light properties are unknown. More precisely for all

possible values of λ, µ and ν there exists an albedo ρ (x, y) and a light L

such that the brightness image related to the depth map z is equal to the

one related to z. Moreover, Belhumeur et al. showed that even if self-

shadow information is used in addition to shading, the two surfaces z and

z remain indistinguishable.

Two interesting methods to estimate light direction are due to [Koen-

derink and Pont (2003)] and [Vogiatzis et al. (2005a)]. The former recovers

the azimuthal angle of the light sources from a single image using texture

information. The limit of this approach is the assumption that the textured
4If we suppose Lambertian surfaces, ρ (P ) an l (P ) can be grouped together thus, we

have only three degrees of freedom.
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surface has to be an isotropic gaussian random rough surface with constant

albedo.

Instead, [Vogiatzis et al. (2005a)] use the brightness values of the con-

tour points of the imaged object in order to estimate light direction by

equation Eq. (12.21). Indeed in such points, surface normals can be re-

trieved knowing that they are perpendicular to the viewing ray connecting

these points to the center of projection of the camera.

12.3.3 Shadows

Scene shadows bear a lot of information about the shape of the existing ob-

jects. They can give information when no other sources do, indeed shadow

regions represent the absence of any other type of information. Methods

which exploit this particular visual cue are called either “Shape form Shad-

ows” or “Shape from Darkness”. They first appear in [Shafer and Kanade

(1983)] where shadows were used to relate the orientations of two surfaces.

Subsequent works on shadows generally used either the shape of the ob-

ject casting the shadow in order to constrain the shape of the object being

shadowed or vice versa. Indeed, one can infer the shape of an unknown

object from the shadows casted on it by a known one. This is the same

principle used in structured light projectors with the only difference that

the methods based on shadow information use shadow patterns instead

of light patterns. The interested reader is sent to [Bouguet and Perona

(1999)] for the description of a low cost scanner based on this principle.

On the contrary, if an unknown object casts shadows on a known one, for

simplicity, let it be a plane, one can use an appropriately modified shape

from silhouette method in order to reconstruct its shape. This approach is

proposed in [Leibe et al. (2000)] in order to avoid segmentation problems

implicit in shape from silhouettes methods.

However, in general, shape from darkness methods deal only with the

shadow that an object casts on itself, the so-called self-shadow. In this case,

both the object that casts the shadow and the object being shadowed are

unknown as they are all parts of the same unknown surface. Nevertheless,

self-shadow can reveal a lot of information. Indeed, let us observe the situ-

ation depicted in Figure 12.8(a) where p1 is first shadow boundary points

and p2 is the last one. Knowing their coordinates, one can obtain an upper

bound for the shadowed region, i.e., the line η. In other words, a point

in such a region cannot be above line η, otherwise it would be a lighted

point. Furthermore, all lighted points at the right of p1 must be above η
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Fig. 12.8 Shadowed surfaces: (a) the coordinates of p1 and p2 are assumed to be known;

(b) α and w are known.

otherwise they would be shadowed. Thus, η is also a lower bound for the

lighted points. Obviously, same results can be obtained if one knows the

coordinates of the light source and the coordinates of one of the points p1
or p2.

Figure 12.8(b) shows a situation similar to the previous one but, in this

case, it is assumed that the coordinates of p1 and p2 are unknown. More-

over, it is supposed that the camera performs an orthographic projection

of the scene and that the light source casts parallel rays of known direction

α. This can be obtained by placing both the camera and the light source

far away from the scene. The measured shadow width w can be used to

estimate the relative height between p1 and p2 using the following

∆h = w tan (α) (12.35)

Moreover, if one assumes that the unknown surface M admits a tangent

plane in p1, such a plane must be parallel to η.

¿From the above considerations, using multiple images taken with dif-

ferent light source positions, one can estimate the unknown surface by

constraining a model (e.g. a spline) to fit all the extracted information

about relative heights and tangent planes (see [Hatzitheodour and Kender

(1988)]).

Furthermore, combining equations of type (12.35) together with the lin-

ear inequality constraints related to the various η, one can obtain a set of
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upper/lower bounds and equations which can be solved by Linear Program-

ming algorithms as in [Yang (1996)] or by iterative relaxation methods like

in [Daum and Dudek (1998)].

[Smith and Kender (1986)] introduced the concept of shadowgram. Let

us suppose the situation depicted in Fig. 12.9(a) where θ is the angle be-

tween the x-axis and the light rays. A shadowgram is a binary function

f (x, θ) recording, for each value of θ, a 0 (black) value at the x coordi-

nates of the shadow points and a 1 (white) value at the x coordinates of

the lighted points. Therefore, a shadowgram typically looks like two ir-

regular black stripes of variable thickness. Smith and Kender demonstrate

that the real surface can be reconstructed from the curves representing the

discontinuities of the shadowgram f (x, θ), i.e., the edges of the dark stripes.

The definition of self-shadow consistency follows. Let us assume first

that the scene is only illuminated by a point light source positioned at ℓ.

Given an objectM , the self-shadow generated onM by the light ℓ is the set

of all the points on its surface not visible from ℓ. Let Θ (M, ℓ) denote this

set. In other words, a generic point P belongs to Θ (M, ℓ) if and only if the

segment joining P and ℓ intersects M in at least one point different from

P . Therefore, given a calibrated image (I, V ), the shadow region generated

by ℓ on M and viewed by V is the set of the V -projections of all the points

of Θ (M, ℓ) visible from V . Let Ω (M, ℓ, V ) denotes this set; then, formally

it is

Ω (M, ℓ, V ) = V (Θ (M, ℓ) ∩Π(M,V )) (12.36)

where Π (M,V ) is the set of all the points of M visible from V . Now,

given the image I and the estimated shadow regions on I, call them ω (I),

one can say that M is self-shadow consistent with image I if and only

if ω (I) ⊆ Ω (M, ℓ, V ). In other words, it is consistent if V does not see

shadow points which are not theoretically generated by M . The contrary

is not required, since, as we will describe below in this section, in practical

situations, only subsets of ω (I) can be accurately estimated. In this way,

the consistent condition is relaxed making consistent surfaces which are not.

However, for correctness, one could also estimate ω (I), i.e. the complement

of ω (I), and define that consistency holds when also ω (I) ⊆ Ω (M, ℓ, V )

holds. Extension to multiple lights is trivial; since, given the set of active

lights (ℓ1, . . . , ℓk) one can define

Ω (M,L, V ) =
∪
∀ℓj

Ω(M, ℓj , V ) (12.37)
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Fig. 12.9 (a) Surface to be reconstructed using the shadowgram technique. (b) Con-
servative shadow carving.

Besides, consistency for multiple views holds if only if it holds for each

singular view. Finally, given an unknown surface Λ and a set of images

taken under different lighting conditions, one can build the maximal sur-

face5 consistent with the extracted shadow information. Let Ψ (Λ) denotes

this surface, then it is obvious that it contains the actual surface Λ, since

Λ is consistent with shadow information.

In [Savarese et al. (2007)] a carving approach is proposed to the problem

of finding Ψ (Λ). The algorithm, called “Shadow Carving”, computes first

a coarse estimate of the surface using volume carving then it incrementally

carves the model removing inconsistencies with self-shadow information.

It is known, from Section 12.3.1 that volume carving computes a volume

which certainly contains the original object. The subsequent carving based

on shadow cue is performed in a conservative way, i.e., in such a way that

the carved model will always contain the actual surface Λ.

Given the situation shown in Fig. 12.9(b) where Λ is the actual surface

andM is its current estimates. Let (I, V ) be a calibrated image, c the center

of projection of V and ω (I) the shadow region on I generated by the light

source ℓ. Let us call inconsistent shadow region s, the set of all surface

points which are visible from both c and ℓ and such that they project in

ω (I). Savarese et al. proved that the cross-hatched area in Fig. 12.9(b) can

be removed from M in a conservative way, i.e., obtaining a new estimate

that still contains the actual surface Λ.

5A maximal surface for a property Q is the surface which satisfied Q and contains every
other surfaces that satisfied Q. In order to avoid degeneration, the maximal surface is
typically upper bounded.
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The major problem of all these algorithms is how to decide whether

a surface point P lies on a shadow region or not. This is not a trivial

task since it is difficult to distinguish low reflectance points from points in

actual shadow regions. The camera only measures radiance coming from

some point of the scene. Thus, low radiance measured in a particular

direction can be due to a low reflectance (dark textured) point as well as to

insufficient illumination. Moreover, insufficient illumination may be due to

light sources too far from the object or to an actual shadow region. In the

latter case, one must ensure that the shadow is generated by the object itself

and not by other objects in the scene. Using only a single image, there is no

way to distinguish between these four cases. Furthermore, even if a shadow

region is detected, it difficult to accurately extract its boundaries, because

shadows, in general, vanish gradually on the surface. Unfortunately, shadow

detection plays an important role in reconstruction since small errors can

lead to a totally incorrect reconstruction.

[Savarese et al. (2001)] propose a conservative shadow detection method,

i.e., a technique which classifies a point as shadow only when it is certain

that it is a shadow. The inverse condition is not required so that there can

be shadow points classified as non-shadow. Obviously, the more shadow

points are detected the more accurate is the reconstruction result. First

of all, one must fix a threshold δ which separates light points from dark

points. A point P of the surface is “detectable” if and only if in at least

one picture it appears lighter than δ, otherwise it is “undetectable”. This

provision ensures that P is not a low reflectance point, but unfortunately,

it excludes many points not lighted by the actual light sources. For every

image, a point is a shadow point if and only if it is “detectable” and it is

darker than the threshold δ.

It is finally worth observing that, like shading information, also shadow

is subject to the rules of the GBR [Kriegman and Belhumeur (2001)].

Therefore, even if the exact position of the light source is not known, one

can reconstruct the observed surface up to a GBR transformation.

12.3.4 Focus/Defocus

There are two techniques to infer depth from a set of defocused images,

called “Shape from Focus” (SfF) and “Shape from Defocus” (SfD). The

first one, SfF, acquires a large number of images with small focal settings

differences. On the other hand, the second one, SfD, needs only few dif-

ferently focused images, typically two or three, in order to estimate depth
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Fig. 12.10 Camera with lens: all the light rays coming from a point P in the focal plane
are projected into a single point p in the image plane.

information. In both cases, defocused images are obtained by varying set-

tings like the camera or the lens focal length, the aperture radius or the

distance between the object to be acquired and the camera. Afterwards,

depth is estimated by comparing the blurriness of different regions in the

acquired images.

Both methods are based on the assumption that a defocused image

is obtained by convolving the focused one with a kernel hsϕ, called point

spread function (PSF), that depends on the camera optic ϕ as well as on

the scene shape s. Such an assumption comes from the observation that,

since pinhole cameras with an infinitesimal aperture are not feasible, each

point of the image plane is not illuminated by a single light ray but by a

cone of light rays subtending a finite solid angle. Consequently, these points

appear blurry. This effect can be reduced by a proper use of lenses. Indeed,

it is well known that in this case, there exists a plane Π, called the focal

plane, parallel to the retinal plane, the points of which are all in focus, or in

other words, each point of Π projects into a single point of the image plane.

The situation is shown in Figure 12.10, where z is the distance between Π

and the center of the lens (the equivalent of the center of projection), fL
is the focal length of the lens and f is the camera focal length defined in

Section 12.2. These quantities are related by the thin lens equation

1

z
+

1

f
=

1

fL
(12.38)

Figure 12.10 shows that all light rays coming from a point P in the focal

plane are projected into a single point p in the image plane. Consequently,

an object is perfectly imaged only if it lies exactly on Π, otherwise, it
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Fig. 12.11 All the light rays coming from a point P ′′ outside the focal plane are pro-

jected to a circular region Θ on the image plane.

appears blurred. As shown in Fig. 12.11, all the rays coming from a point

P ′′ outside the focal plane are projected to a circular region Θ on the image

plane.

The image of P ′′ can be modeled as the integral of the ideal image,

where P ′′ is correctly imaged, weighted by a function (the PSF) which

generates the blur effect. Therefore, the relationship between the actual

image I and the ideal image where all the scene points are correctly imaged

I is given by

I (p) =

∫
hsϕ (p, q) I (q) dq (12.39)

If the surface to be acquired is parallel to the focal plane then the PSF can

be assumed to be shift invariant, i.e., hsϕ (p, q) = hsϕ (p− q) and Eq. (12.39)

can be rewritten as a convolution

I (p) =

∫
hsϕ (p− q) I (q) dq =

(
hsϕ ∗ I

)
(p) (12.40)

As a first approximation, the blur intensity depends on the radius r of

Θ, also known as the blurring radius, which is proportional to the distance δ

between the actual image plane and an ideal one where P would be correctly

imaged (see Fig. 12.11). More precisely,

r =
δR

f
(12.41)

where R is the radius of the lens.

As mentioned above, both SfF and SfD estimate depth from Eq. (12.40).

Namely, SfF identifies the regions of the input images where hsϕ has not been
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applied, i.e., the in-focus regions. Since hsϕ is a low pass filter, a defocused

region appears poor of high spatial frequency. Furthermore, if the surface

to be acquired has high spatial frequency content, i.e., for instance it is

a rough surface, a focused region can be recognized by analyzing its local

Fourier transform.

The typical approach is to filter each input image I with a high pass FIR

with impulse response ω and to evaluate the level of blur v (p) of each point

p as

v (p) =

∫
Aε(p)

(
ω ∗ I

)
(q) dq (12.42)

where Aε (p) is a neighborhood of p. Once these values are computed for a

set of images
(
I1, . . . , In

)
, shape can be inferred by the following algorithm:

• Let vi (p) be the level of blur of the point p of image Ii
• Let zi be the depth of the focus plane related to Ii
• For each point p, find j such that j = argmax {vj (p)} (i.e., find the

image Ij with the sharpest representation of p)

• assign to p depth zj

For a more precise reconstruction using gaussian interpolation the reader

is referred to [Nayar and Nakagawa (1994)].

SfD methods instead, try to invert directly Eq. (12.40). The difficulty

lies in the fact that neither hsϕ nor I are known. Thus, blind deconvolution

techniques are used in this task. Given a set of blurred images
(
I1, . . . , In

)
,

from Eq. (12.40), one can write

I1 = hsϕ1
∗ I

...

In = hsϕn
∗ I (12.43)

where ϕi is the optical setting used for image Ii. Many strategies were

developed to solve the above ill-posed problem. Classical approaches can

be found in [Chaudhuri and Rajagopalan (1999)]. Effective variational and

optimization approaches are due to [Jin and Favaro (2002)] and [Favaro and

Soatto (2005)] respectively. In particular, in [Favaro et al. (2003)] shape is

estimated by inferring the diffusion coefficient of a heat equation.

These methods are widely used in optical microscopy because micro-

scopes have narrow depth of field; therefore, it is easy to obtain pictures

containing both blurry and sharp regions.
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Fig. 12.12 From a pair of matched points p1 and p2, the 3D coordinates of point P can
be computed by triangulation.

12.3.5 Picture differences: stereo methods

Algorithms which exploit the differences between two or more pictures of

a scene are called “stereo-matching algorithms” [Marr and Poggio (1979)].

They are based on the same process used by human vision system to per-

ceive depth, called stereopsis. For this reason, this particular depth cue is

typically called stereo information.

In stereo methods, 3D reconstruction is accomplished in two main steps,

the first addressing the so-called correspondences (or matching) problem

and the second addressing the so-called reconstruction problem. The for-

mer recognizes if two or more points belonging to different images are the

projection of the same point P of the 3D scene. The latter uses these cor-

respondences in order to estimate the exact position of P in the 3D space.

Reconstruction task is achieved by triangulation. For example, let p1
and p2 be a pair of matched points in two different images I1 and I2 re-

spectively. Thus, the real point P which they refer to, belongs to both the

optical rays r1 and r2 related to p1 and p2 respectively. The situation is

schematically depicted in Fig. 12.12. Therefore, P must lie at the intersec-

tion of r1 and r2. In practice, r1 and r2 may not intersect due to a imperfect

camera calibration or to image discretization errors. The associated depth

estimation problem in projective geometry is a linear overconstrained sys-

tem with three unknowns and four independent equations which can be

solved by least squared methods. Details can be found in any computer

vision book, for instance in [Hartley and Zisserman (2000)].

Stereo methods were widely used in many applications; hence, various

versions of these algorithms were developed in order to cope with different
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types of practical challenges. Recent comparisons of existing stereo match-

ing techniques can be found in [Scharstein and Szeliski (2002)] and in [Seitz

et al. (2006)]. A classification of these techniques is not easy because of

the number of characteristics to take into account. In the following, stereo

methods will be presented according to a basic taxonomy distinguishing

them with respect to baselines lengths, number of input images and type

of correspondences used. A baseline is a segment connecting the centers of

projection of a pair of cameras. Stereo methods which operate with long

baselines are called wide baseline stereo methods, otherwise they are called

small baseline stereo methods. Matching problem is different in these two

situations. For example, perspective deformations effects can be ignored in

the small baseline case but not in the wide baselines case.

Algorithms which use two, three and n > 3 images as input are called

respectively binocular stereo, trifocal stereo and multi-view stereo. The use

of multiple cameras simplifies the reconstruction task reducing errors in

the 3D coordinates estimation; moreover, in many situations it eliminates

matching ambiguities. In fact, one can use a third camera to check if an

hypothetical match is correct or not.

Binocular stereo stores matching information in a map, called disparity

map, which associates each pixel of the first input image with the matched

pixel of the second input image as follows

p2 = p1 + d (p1) (12.44)

where p1 and p2 are the coordinates of the two matched pixels and d is the

disparity map.

In a multi-view stereo algorithm the matching and reconstruction tasks

are mixed together. Therefore, a disparity map is typically replaced by a

complex internal scene representation, such as, a volumetric or a level-sets

[Faugeras and Keriven (1998)] representation. In particular, using a volu-

metric representation, reconstruction is achieved by techniques like voxel

coloring [Seitz and Dyer (2000)], space carving [Kutulakos and Seitz (2000)]

and max-flow [Roy and Cox (1998); Vogiatzis et al. (2005b)]. Space carv-

ing applies the above mentioned carving paradigm. In this case, voxels are

carved out if they do not project consistently into the set of input images.

Therefore, starting from an initial estimate of the surface which includes

the actual one, the algorithm finds the maximal surface, called Photo Hull,

photo-consistent with all the input images. Instead, voxel coloring operates

in a single pass through the entire volume of the scene, computing for each

voxel a likelihood ratio used to determine whether this voxel belongs to the

scene or not.
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With respect to the type of correspondences used, an important family

of algorithms, called features based stereo (FBS), concerns the methods

which use image features as stereo information. A feature is a high level

data structure that captures some information locally stored in an image.

The most used features are edges and corners, but in the literature one

can find many other higher order primitives such as regions [Cohen et al.

(1989)] or topological fingerprints [Fleck (1992)]. It is important to note

that a feature in the image space does not always correspond to a real

feature in the 3D scene.

Restricting matching problem to a small set of a priori fixed features has

two big advantages. First of all, features are not affected by photometric

variations because they are simple geometrical primitives. Furthermore,

since the correspondence search space is highly reduced, the matching task

is speeded up. Unfortunately, any feature space gives a discrete description

of the scene; thus, reconstruction results in a sparse set of 3D points.

Methods which perform matching between two or more points compar-

ing the regions around them are called area based stereo (ABS) methods.

These techniques are based on the assumption that given two or more views

of the same scene, the image regions surrounding corresponding points look

similar. This can be justified by the fact that since corresponding points

are the projection of the same point P , their surrounding regions are the

projection of the same piece of surface around point P . Therefore, what

ABS methods do is to perform matching using only the local reflectance

properties of the objects to be acquired.

A formal explanation requires some definitions. Let P be a point of

surface M and denote by Aϵ (P ) ⊂M the surface neighborhood of P with

radius ϵ. Let (I1, V1) and (I2, V2) be two calibrated images, assume that

P is visible on both images and let (p1, p2) = (V1 (P ) , V2 (P )) be a valid

correspondence. Therefore, V1 (Aϵ (P )) and V2 (Aϵ (P )) are the projection

of Aϵ (P ) on the image space of I1 and I2 respectively. Suppose that the

cameras are placed in such a way that the shapes of the image regions

V1 (Aϵ (P )) and V2 (Aϵ (P )) look similar, i.e., they are subject to a limited

projective distortion. This can be achieved by a pair of parallel cameras

with equal up-vectors (see Section 12.2) and small baseline/depth ratio.

In other words, the surface to be acquired has to be far away from the

point of views or/and the camera baseline has to be small. Assume that

surfaceM , in Aϵ (P ), behaves as a pure Lambertian surface. Therefore, the

radiance leaving Aϵ (P ) is independent of the viewpoint. Consequently, the

image intensities acquired by the viewpoints V1 and V2 in V1 (Aϵ (P )) and
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V2 (Aϵ (P )) must be equal, up to different camera optical settings (such as

focusing, exposure or white balance). More formally, let

n1 (p1) = I1|V1(Aϵ(P ))

n2 (p2) = I2|V2(Aϵ(P )) (12.45)

be the image intensities around the corresponding points p1 and p2, i.e.,

the restrictions of the images I1 and I2 to respectively V1 (Aϵ (P )) and

V2 (Aϵ (P )). Since V1 (Aϵ (P )) and V2 (Aϵ (P )) can be supposed to be equal,

images n1 (p1) and n2 (p2) are defined in the same domain up to different

discretization of the image space. Therefore, one can make a one to one

intensities comparison between n1 (p1) and n2 (p2) using simple similarity

measures such as for example, Sum of Squared Differences (SSD), Sum

of Absolute Differences (SAD) or Intensity Correlation Distance (ICD),

respectively defined as:

SSD (p1, p2) = ∥n1 (p1)− n2 (p2)∥2
SAD (p1, p2) = ∥n1 (p1)− n2 (p2)∥1 (12.46)

ICD (p1, p2) = ⟨n1 (p1) , n2 (p2)⟩
where ∥·∥1, ∥·∥2 and ⟨·, ·⟩ are respectively the one-norm, the two-norm and

the dot-product in function space. In order to make the above measures

invariant to camera settings such as white balance and exposure, n1 (p1)

and n2 (p2) should be replaced by their normalized versions n1 (p1) and

n2 (p2), where

n (p) =
n (p)− µ

σ
(12.47)

with µ the sample mean of n (p) and σ2 its sample variance.

If the above assumptions were satisfied, one could choose an arbitrary

shape for image region V1 (Aϵ (P )) and V2 (Aϵ (P )) and compare them by

one of the “metrics”of Eq. (12.46). Usually, square or rectangular shaped

windows are preferred since they simplify the computation. Window size

plays a crucial role in matching problem. Indeed, small windows are unable

to solve matching ambiguities, while large windows make no longer valid

the assumption of limited perspective distortion.

In synthesis, given a metric D (·, ·), the matching problem is reduced

to finding all correspondences (p1, p2) such that D (p1, p2) is less than a

given threshold. Matching task is time expensive since it has to compare

each pixel of each image with all the pixels of the other images. However,

the knowledge of the calibration parameters can help to restrict the corre-

spondence search space. Indeed, given a scene point P and its projection
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Fig. 12.13 Left and right images of a stereo pair: ℓ is the epipolar line associated to p1.

p1 on the image I1, then P certainly belongs to the optical ray r1 related

to p1 as depicted in Fig. 12.12. Ray r1 starts from the center of projec-

tion c1 of the image I1 and passes through p1 in the image plane of I1.

Therefore, if p2 is the projection of P on the second image I2, then p2 must

belong to the projection of ray r1 on I2, i.e., it must belong to the half-line

ℓ = V2 (r1) called the epipolar line associated to p1 (see Fig. 12.13). As a

consequence, the correspondence search space related to point p1 is reduced

from a two-dimensional search domain to a one-dimensional one.

In order to improve speed in binocular stereo one may replace the two

input images I1 and I2 with their rectified versions, i.e., the two equiv-

alent pictures obtained with cameras positioned in such a way to have a

common image plane parallel to the baseline and equal up-vectors. Such

a process, known as rectification, is achieved by projecting the original im-

ages I1 and I2 into the new image plane. For a comprehensive tutorial on

image rectification the reader is referred to [Fusiello et al. (1997)]. The

main characteristic of a rectified image is that its epipolar lines are either

all horizontal or all vertical, thus, the search for the correspondences can be

performed only along rows or columns. In this case, disparity in Eq. (12.44)

can be rewritten as

x2 = x1 + d (x1, y1) , y2 = y1 (12.48)

where p1 = (x1, y1) and p2 = (x2, y2). Consequently, the matching problem

is reduced to the following maximization problem

d (x1, y1) = −x1 + argmax {D((x1, y1) , (x2, y1)) | ∀x2 ∈ [1, NX ]} (12.49)

where D (·, ·) is a generic similarity metric and NX is the image width.

Sometimes rectification is used also in multi-view stereo systems with ap-

propriate adjustments.
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The physics of the image formation process imposes that each image

point has at most one corresponding point in each other image. Therefore,

an ambiguity occurs when the solution of the maximization Problem (12.49)

is not unique. Such an ambiguity can be solved by adding constraints to the

problem, such as surface continuity, disparity bounds or disparity ordering

constraint which the scene to be acquired may respect or not. The first type

of constraints is obvious while the second says that d (x1, y1) must be less

than a given threshold for all possible values of (x1, y1). The third imposes

that the ordering along the epipolar lines must be preserved. This last

one allows one to use dynamic programming approaches to the matching

problem as in [Meerbergen et al. (2002)].

Computation can be further speeded up if it is organized in a pyramidal

structure. In this case, each image is partitioned into different resolution

layers (e.g. a Gaussian or a Laplacian pyramid) and the 3D reconstruction

is performed at each resolution. At the first iteration, the algorithm runs

at the lowest resolution layer creating a first coarse estimate of the surface.

At the subsequent stages, the correspondence search interval is restricted

using information extracted at the previous layer so that the search is con-

siderably simplified. A detailed account of this method can be found in

[Menard and Brandle (1995)].

Unfortunately, the pure Lambertian assumption for the surface re-

flectance is too strict for general purpose, indeed objects with constant

BRDF are rather rare while surfaces with some kind of specularity are

much more common. Therefore, since the radiance reflected by a surface

point P changes as a function of the point of view, image intensities n1 (p1)

and n2 (p2) can be quite different. A typical example is the highlight on

a specular surface which moves as the point of view moves. In order to

face this problem, one can estimate the object radiance together with its

shape as in [Jin et al. (2003)]. Another solution is proposed in [Yang et al.

(2003)] which describes a similarity measure invariant with respect to the

specularity effects.

Another difficulty in the matching task is due to the fact that it is not

always possible to have V1 (Aϵ (P )) and V2 (Aϵ (P )) within limited projec-

tive distortions. Indeed, in general, they are only related by a projective

transformation; thus, their shapes can differ in scale, orientation and so on.

Sometimes rectification may help to reduce projective distortions. Several

techniques were developed to avoid this problem. It is worth recalling the

level set method proposed in [Faugeras and Keriven (1998)] which uses the

current geometry estimate to infer shape and size of the matching windows
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V1 (Aϵ (P )) and V2 (Aϵ (P )). This method iteratively refines the model ge-

ometry and performs the match with the estimated windows.

12.4 Multimodal methods

As previously mentioned, multimodal methods reconstruct the shape of an

object from more than just one type of information. Since some methods

work well in some situations but fail in others, the basic idea of multimodal

methods is to integrate information not supplied by one method with that

provided by the others. These methods hold the promise of reconstructing

a wide range of objects, avoiding the restrictions characterizing individual

monomodal methods. Furthermore, the possibility of measuring the same

information in different ways allows us to reduce errors typical of specific

methods. In short, the characteristics that make these methods superior to

monomodal methods, are their robustness and the possibility of acquiring

wider ranges of objects.

Unfortunately, the use of more types of information increases algorith-

mic and time complexity. Indeed, multimodal methods often need a com-

putationally expensive final stage that fuses together all the data extracted

and processed in the previous stages. In the literature there exist sev-

eral ways to combine these data and the specific algorithms depend on the

type of data to be fused. For example, [Vogiatzis et al. (2006)] proposes

a method that combines silhouette and shading information. In particular

silhouettes are employed to recover camera motion and to construct the

visual hull. This is then used to recover the light source position and fi-

nally, the surface is estimated by a photometric stereo algorithm. In [White

and Forsyth (2006)] a method is described that combines texture and shad-

ing cues. More precisely, this latter information is used to solve surface

estimation ambiguities of the shape from texture algorithm.

However, most techniques combine multiple cues by classical paradigms

like carving or optimization. In particular, as we mentioned before, the

carving approach leads to a maximal surface consistent with all the ex-

tracted information and certainly including the actual surface. The idea

behind multimodal methods based on carving, is to carve all voxels incon-

sistent with at least one type of information. “Shadow carving” and “Space

carving” are examples of this approach combining respectively shadow and

silhouette information and stereo and silhouette information.

On the other hand, the optimization paradigm minimizes a cost func-
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tional that takes into account of all the various types of information, deliv-

ering as solution a surface fitting the extracted data as much as possible.

More formally:

Problem 12.1. Given Ω the set of all closed surfaces in ℜ3, i.e., the set

of all the possible surfaces that can be reconstructed, and (α1, α2, . . . , αj) a

j-tuple, where αi is information of type i extracted from the input images,

the multimodal fusion problem consists in finding M such that

M = argmin {ξ(M) | ∀M ∈ Ω} (12.50)

where ξ : Ω → ℜ is the cost functional

ξ (M) = κint · ξint (M) +
∑
i

κi · ξi (M,αi) (12.51)

with ξint a cost functional that penalizes non-smooth surfaces and ξi (·, αi)
functionals that penalize surfaces inconsistent with information αi; κint and

κ1, . . . , κj are constants a priori fixed.

Consequently, the solution surface M will be as smooth as possible and

consistent with as many data as possible. Constants κint and κ1, . . . , κj
balance the impact of the various types of information and the smoothness

requirement.

Typically ξint is related to the mean or to the Gaussian curvature of the

surface. For example, it can be defined as

ξint =

∫
M

κds (12.52)

where κ is the mean curvature.

Functionals ξi (·, αi) instead, depend on the type of information to which

they are related. The literature reports many of such functionals accounting

for a great variety of visual cues. An interesting functional which penalizes

surfaces far from a generic cloud of points Σ is defined as

ξcloud (M) =

(∫
M

dΣ(P )
kds

) 1
k

(12.53)

where dΣ(P ) is the minimum distance between point P ∈M and the points

of set Σ (see Fig. 12.14). Therefore, Eq. (12.53) can be used as one of the

ξi, in order to penalize surfaces inconsistent with information extracted, for

example, by the stereo-matching algorithm.

Let us observe that Eq. (12.53) accounts for the contribution dΣ(P ) of

the distance between each P ∈ M and Σ. Therefore, a surface through
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Fig. 12.14 In order to evaluate Eq. (12.53), one must measure the distance between Σ

and each infinitesimal part of the surface.

empty regions of Σ is bound to have a high value of ξcloud. Consequently,

the solution will be a surface that avoids those regions. This is not always

desirable because the empty regions of Σ may be due to actual holes in the

object or to failures of the stereo matching algorithm (e.g. in case of dark

or poor texture areas).

Several works in the literature address the multimodal fusion problem by

an optimization approach. [Wohler (2004)] uses both shading and shadow

information to reconstruct the lunar surface. [Fua and Leclerc (1995)] fuse

together stereo and shading. [Gheta et al. (2006)] use stereo and focus

information. [Esteban and Schmitt (2004); Matsuyama et al. (2004); Sinha

and Pollefeys (2005)] fuse stereo and silhouette. [Ballan and Cortelazzo

(2006)] combine silhouette, stereo and shadow information.

Problem (12.1) can be solved in several ways, but, the current trends

are the max-flow/min-cut and the deformable models techniques. Max-

flow/min-cut techniques transform the fusion problem into a graph prob-

lem where the optimal surface is obtained as the minimum cut solution of

a weighted graph. For a recent account see [Sinha and Pollefeys (2005)].

Instead, deformable models techniques [Kass et al. (1987); Osher and Fed-

kiw (2003)] solve Problem (12.1) by a gradient descent algorithm on the

Euler-Lagrange equation obtained from functional ξ as described in the

next section.

12.4.1 Deformable models

A deformable model is a manifold deforming itself under forces of various

nature. Typically, but not always, these forces make the surface minimize

an a priori fixed functional. These forces are classified as internals or ex-
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ternals. The former are generated by the model itself and usually have an

elastic nature while the latter depend on the specific problem to solve.

Deformable models appeared for the first time in [Kass et al. (1987)]

within the definition of snake or active contour. A snake is a parametric

curve x(s) in the two-dimensional image space that deforms itself main-

taining its smoothness and converging to the boundary of a represented

object in the image. It is associated to a functional similar to the one of

Eq. (12.51) with

ξint (x) =
1

2

∫ 1

0

[
α |x′ (s)|2 + β |x′′ (s)|2

]
ds (12.54)

ξ1 (x) = −
∫ 1

0

|▽[Gσ ∗ I](x(s))|2 ds (12.55)

where I (x, y) is the image intensity function and Gσ (x, y) the zero mean

bi-dimensional gaussian function with standard deviation σ. Note that, in

this case, the manifold M of Eq. (12.51) is replaced by the snake, x (s),

which is a specific parameterization of M .

Since their introduction, deformable models were used in many com-

puter vision tasks, such as: edge-detection, shape modeling [Terzopoulos

and Fleischer (1988); McInerney and Terzopoulos (1995)], segmentation

[Leymarie and Levine (1993); Durikovic et al. (1995)] and motion tracking

[Leymarie and Levine (1993); Terzopoulos and Szeliski (1992)]. Actually,

in the literature there exist two types of deformable models: the paramet-

ric (or classical) one [Kass et al. (1987); Terzopoulos and Fleischer (1988);

Cohen (1991)] and the geometric one [Caselles et al. (1993, 1995); Osher

and Fedkiw (2003)]. The former are the direct evolution of snakes, while

the latter are characterized by the fact that their surface evolution only

depends on the geometrical properties of the model.

Geometrical framework is based on the level set methods. In this case,

the model M is a surface in ℜ3, for which there exists a regular function

ψ : ℜ3 → ℜ and a constant c ∈ ℜ such that

M =
{
x ∈ ℜ3 | ψ (x) = c

}
= LevelSetψ(c) (12.56)

In other words, M is the section of level c of a function ℜ3 → ℜ (see

Fig. 12.15). Besides, the forces are applied to ψ and not directly to M and

only when convergence is reached, M is computed. Thus, both ψ and M

evolve over time according to the partial differential equation{
ψ (0) = ψ0
∂ψ
∂t (t) = F (ψ (t))

(12.57)
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Fig. 12.15 Left: representation of LevelSetψ(c) where ψ : ℜ2 → ℜ. Right: the result
of the operation.

where ψ (t) is the function ψ at time t, ψ0 is its initial state and F (ψ (t)) is

the force applied to ψ at time t. Hence, since this method operates only on

ψ, surface M can dynamically change its topology. Roughly speaking, M

can change its number of holes. For example, the reader could imagine to

move upwards and downwards the plane of Figure 12.15, as the plane moves

one obtains sections of ψ with a different number of connected components.

Dynamic topology is the key feature that makes the geometrical framework

a more powerful tool than the parametric one. The interested reader is sent

to [Osher and Sethian (1988)] for further details.

The remainder of this section is focused on classical deformable model

techniques. In this case, in order to solve the minimum problem researchers

propose a standard variational approach based on the use of a gradient

descent on the Euler-Lagrange equation obtained from functional ξ, which

we explain by way of the following example.

Let s be a specific parameterization of M , i.e., s is a function from an open

subset A ⊂ ℜ2 to ℜ3, and consider the functional

ξ (s) = κint · ξint + κcloud ·
∫
A

dΣ(s (u, v))dudv (12.58)

where dΣ is the same as in Eq. (12.53) and

ξint =

∫
A

∥∥∥∥ ∂s∂u
∥∥∥∥2+∥∥∥∥∂s∂v

∥∥∥∥2 dudv+∫
A

∥∥∥∥ ∂2s∂u2

∥∥∥∥2+∥∥∥∥∂2s∂v2

∥∥∥∥2+2

∥∥∥∥ ∂2s

∂v∂u

∥∥∥∥2 dudv
(12.59)

where the first term penalizes non-isometric parameterizations of M and

the second term is equal to the total curvature of M if s is an isometry,

thus penalizing non-smooth surfaces.

The related Euler-Lagrange equation [Fox (1987)] is:

−∇2s (u, v) +∇4s (u, v)− Fcloud (s (u, v)) = 0 (12.60)
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where ∇2s, ∇4s are respectively the laplacian and the bi-laplacian of s and

Fcloud : ℜ3 → ℜ3 is a field that associates to each point P in the space a

unit vector pointing to the point of Σ nearest to P .

The problem of finding M which minimizes ξ has been turned into the

problem of finding s, a parameterization of M , which satisfies Eq. (12.60).

Therefore, the solution can be computed by a gradient descent algorithm

on the following problem

argmin
{∥∥−∇2s (u, v) +∇4s (u, v)− Fcloud (s (u, v))

∥∥ ,∀s} (12.61)

Consequently, this algorithm can be interpreted as the deformation of a

parametric surface s subject to two forces defined as follows

Fint = ∇2s−∇4s (12.62)

Fext = Fcloud (12.63)

Let s (t) be the model s at time t, therefore the evolution is described by

the following partial differential equation{
s (0) = s0
∂s
∂t (t) = β · (Fint + Fext)

(12.64)

where s0 is the initial surface and β determines the evolution speed. In

order to find a numerical solution of Eq. (12.64), one can use forward Euler

and apply the forces to all the vertices of the mesh. The discrete versions

of ∇2 and ∇4 on a triangular mesh can be computed using the umbrella ∆̃

and the squared umbrella ∆̃2 operators respectively [Esteban and Schmitt

(2004)].

The advantages and the drawbacks of geometric and parametric de-

formable models can be summarized as follows. Geometric models have

dynamic topology but are not easy to control. Their computation is typi-

cally slower than that of parametric models. On the other hand, parametric

models have a fixed topology and suffer local minima problems in proximity

of concavities. Their computation is faster and by a suitable parameters

choice one can also control the parametric characteristics of the final mesh.

12.4.2 Application examples

Multimodal methods, in principle, can use any combination of the visual

cues previously seen. Clearly, some combinations can be more effective and

manageable than others. This section reviews two multimodal techniques

recently proposed in the literature.
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A method that combines silhouette and stereo information using clas-

sical deformable models is described in [Matsuyama et al. (2004); Esteban

and Schmitt (2004)]. A first estimate s0 of M is found by volume carving.

Starting from s0, the model evolves subject to three types of forces:

∂s

∂t
(t) = β · (Fint + Fstereo + Fsil) (12.65)

where Fint is defined as above, Fstereo enforces stereo consistency and Fsil
silhouette information.

In order to avoid local minima problems, [Esteban and Schmitt (2004)]

define Fstereo as the gradient vector flow (GVF) [Xu and Prince (1998)] of

Σ, that is a vector field solution of a diffusion equation.

Let P1, . . . , Pm be the projections (silhouettes) of the real surface Λ

viewed by V1, . . . , Vm respectively and M be the mesh that currently ap-

proximates Λ. Let v be a vertex of meshM , Fsil (v) in [Esteban and Schmitt

(2004)] is defined as

Fsil (v) = α (v) · dvh (v) ·N (v) (12.66)

where N (v) is the surface normal in v, dvh is the signed distance between

the visual hull and the projection of vertex v, defined as

dvh (v) = min
j
d (Vj (v) , Pj) (12.67)

where d (Vj (v) , Pj) is the signed distance between Vj (v) and Pj , i.e., it

is positive if v belongs to the visual hull and negative otherwise. α (v) is

defined as

α (v) =

{
1 if dvh (v) ≤ 0
1

(1+d(Vc(v),Vc(M)))k
if dvh (v) > 0

(12.68)

where c = argminj d (Vj (v) , Pj) and Vc (M) is the projection of M viewed

by Vc. This means that if v is outside the visual hull, Fsil (v) is equal

to dvh (v) · N (v). Instead, if v is inside the visual hull, α (v) controls

the transition of v from a contour point where d (Vc (v) , Vc (M)) = 0 to a

concave point where d (Vc (v) , Vc (M)) > 0. In this way, Fsil reduces its

intensity as much as v is inside the visual hull and parameter k controls the

decreasing factor. Figure 12.16 exemplifies the situation.

As we can see in Figure 12.17(a) and in Fig. 12.17(b), silhouette in-

formation cannot describe model concavities which cannot be seen from

the acquisition viewpoints, while stereo based methods fail in low variance

regions and contours. Silhouette and stereo fusion Fig. 12.17(c) makes a
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Fig. 12.16 Distances involved in Fsil computation.

better reconstruction of the original surface correcting errors and integrat-

ing information missing in each monomodal reconstruction. The final mesh

turns out to be smooth and rather uniformly sampled.

An algorithm which combines stereo, silhouette and shadow information

using the deformable model framework is proposed in [Ballan and Corte-

lazzo (2006)]. In particular Fshadow, i.e., the force related to shadow infor-

mation, is defined in a way that minimizes the inconsistency with shadow

information. In fact, like in the carving approach, the inconsistent surface

portions (for example, portion s in Figure 12.9(b)) are pushed inside the

surface. More formally,

Fshadow (v) = −i (v) ·N (v) (12.69)

where N (v) is the outer normal to the surface in v and i (v) is a scalar

function equal to 1 if the vertex v is inconsistent with shadow information,

and equal to 0 otherwise.

Shadow information can improve the reconstruction obtained from just

stereo and silhouette information; indeed, it can describe the shape of the

concavities where stereo and silhouette information are missing.

12.5 Summary

This chapter presented an overview of passive optical 3D reconstruction

methods as a tool for creating content. The main reason for the great

attention that passive methods received in the literature probably rest in

their acquisition speed (without intruding into the scene in any way, not

even by just radiating energy) and in their inexpensive acquisition equip-

ment (as simple as a digital camera). The counterpart of such a simplicity
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Fig. 12.17 Multimodal vs monomodal methods: (a) smoothed model obtained by vol-

ume carving; (b) model obtained by fusing together different partial models obtained by
stereo matching; (c) model obtained by silhouette and stereo fusion; (d) model obtained
by texturing model c.

is the complication that the reconstruction algorithms may have. However,

algorithmic complexity, when needed, can be effectively handled by paral-

lel computation or special hardware such as GPUs. In this context it may

be worth recalling that passive methods are also employed for real time

reconstructions of dynamic scenes, in applications such as interactive tele-

vision, 3DTV and free-viewpoint video [Matsuyama et al. (2004); Hilton

and Starck (2004); Magnor (2005)].

While early research about passive methods concentrated in the discov-

ery and exploration of the various types of visual cues available from images,

the current research trend, instead, aims to blend together several types of

information in order to overcome the limitations of monomodal reconstruc-

tion. This operation at present uses carving or optimization approaches for

synergistically fusing the various information sources. Detailed examples of

how to combine different visual cues were presented in Section 12.4. Mul-

timodal passive methods, as expected, are more robust than monomodal

methods with respect to errors and scene characteristics.
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