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Abstract

We explore a new approach to marker-less motion track-
ing of a priori known skinned meshes using both optical
flow and silhouette information. We present a formulation
which considers in a unified way both these two kinds of
information and accounts for the non-rigid deformations of
the object skin modeling them using the Skeletal Subspace
Deformation (SSD). We then demonstrate the effectiveness
of our technique showing its performance in a four cam-
era set-up tracking a subject modeled by a skeleton with 46
degrees of freedom.

1. Introduction

Motion capture finds application in a variety of fields
such as character animation in film and game industries,
bio-mechanical analysis, ergonomics and surveillance. Cur-
rent commercial motion capture products typically use op-
tical, magnetic, inertial or mechanical motion capture de-
vices which are rather expensive and force users to wear, in
the best case, markers all over their body. Marker-less mo-
tion capture systems are a very attractive non-invasive al-
ternative since they are not restricted to motion information
associated with markers and weave users from the inconve-
nience of wearing special garments or devices. Therefore it
doesn’t come as a surprise that, in the last decade, marker-
less motion capture has been a highly active research area.
Two recent surveys [12], [13] list over 350 published works
on this topic from 2000 to 2006.

Marker-less motion capture methods assume that a sub-
ject is observed by a single or by multiple video cameras
and that the acquired images are processed in order to esti-
mate the subject’s pose at every observation time.

According to [13] the class of approaches which received
most attention in the literature is the Multiple views 3D Pose

estimation with Direct Model Use. This class of methods
reconstructs the pose at time t from the pose at time t − 1
based on an explicit representation of the kinematic struc-
ture of the human subjects. The analysis-by-synthesis ap-
proach is typically adopted in order to optimize a functional
representing the similarity between observed and estimated
data. The optimization is generally performed by gradi-
ent descent techniques. Other approaches use stochastic
tracking techniques like particle filtering [9] essentially for
handling abrupt pose changes with the drawback of a con-
siderably increased computational complexity. Recent ap-
proaches use stochastic search methods [5] in order to avoid
local minima and outliers problems with the added benefit
of a considerable computational performance improvement.

The works in this class can be sub-classified according
to the type and the domain of the used motion cues. The
most used motion cue is silhouette information [3], [15],
[5], [11], [14] but also stereo [16], [17] and/or optical flow
[18], [19] are exploited.

The motion cue domains found in the literature can ei-
ther be 3D or 2D. Methods belonging to the first class use
the input images in order to get a course estimate of the 3D
shape of the viewed human, i.e., the 3D cues. Then they try
to fit their own subject model within such a reconstruction.
The model’s pose which best fits the reconstruction will be
the solution to the pose problem. Typically, these meth-
ods use visual hull techniques [15], [11], [14]. In this case,
the reconstruction quality critically depends on the number
of used cameras, since the visual hull is an upper bound
of the real surface and the fewer views are available, the
higher are likely to be the discrepancies between the visual
hull and the model to be estimated. With very few cameras
the number of pose ambiguities becomes high and the pose
represented by the visual hull may not be recognizable even
by an human operator. Visual-hull methods may contribute
false boundary information in the presence of concavities
of the subject in action. In order to avoid the visual hull
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limitations, some methods like [16], [17], [5] add stereo in-
formation to deal with concavities and to increase the 3D
reconstruction quality. Other methods like [19] use 3D mo-
tion field as additional information.

The methods based on 2D motion cues minimize an ob-
jective function without directly inferring the 3D of the
scene. For instance, [3] defines a silhouette similarity met-
ric based on the XOR operator and minimizes it by Pow-
ell’s method in order to obtain the pose estimate. The above
mentioned reasons behind an imperfect match between the
observed data and the estimated model typical of 3D cues
do not hold in the case of 2D motion cues.

This paper presents a new approach to the tracking prob-
lem belonging to the class of Multiple views 3D Pose es-
timation with Direct Model Use. It is based on a priori
known skinned mesh model of the human body, in con-
trast with other approaches representing the human body
as a collection of rigid elements (such as sticks, ellipsoids,
segmented body parts, etc...). The major advantage of the
skinned mesh representation is that it allows to effectively
account for non-rigid body skin deformations. The skinned
mesh at a base pose is acquired by a body scanner.

Our method uses only 2D motion cues, namely optical
flow and silhouette information. Furthermore, it minimizes
an objective function which considers both information and
simultaneously accounts for the non-rigid deformations of
the body skin. This allows also to estimate small body parts,
such as clavicles and spinal bones whose deformations are
hard to approximate by rigid sub-elements. The availability
of an accurate body model and the use of only 2D motion
cues allow a very good fit between estimated and observed
data.

Experimental evidence of the effectiveness of the pro-
posed technique in a four camera set-up is provided using a
subject modeled by a skeleton with 46 degrees of freedom.

This paper is organized in three parts. Section 2 de-
scribes the basic concepts and notation used in this work.
Section 3 describes the proposed algorithm, Section 4
shows the experimental results and Section 5 draws the con-
clusions.

2. Human body model: basic concepts and no-
tation

In this work we assume that the 3D mesh of the human
to be tracked is available at a known fixed position. This
3D model is obtained using a body scanner. The human
moving over time is modeled as a time-varying 3D mesh
supported by an inner skeleton, according to the Skeletal
Subspace Deformation (SSD) [4]. This section recalls the
concepts of kinematic tree and linear skinning of the SSD
and introduces the notation used in this paper.

Figure 1. Textured articulated deformable
model and its underlying skeleton.
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A kinematic tree is a set of m reference systems (called
bones or links) organized in a tree structure (see Fig. 1 and
Fig. 2). Let AM1, . . . , AMm be the homogeneous matri-
ces associated to every reference system of the kinematic
tree and let Φ = ({1, . . . ,m} , φ) be the graph which re-
lates the reference systems in a tree structure, where φ
is a tree relationship such that, for a pair of bones h1

and h2, (h1, h2) ∈ φ if and only if h1 is the father of
h2. The kinematic tree can be represented by the ordered
pair ({AM1, . . . , AMm} ,Φ). The origins of all the ref-
erence systems belonging to a kinematic tree, excluding
the one of the root, are called joints. A kinematic chain
Λ = {h1, . . . , hl} of Φ is a subset of bones of Φ where
(hi, hi+1) ∈ φ for i = 1, 2, . . . , l, i.e., all the bones are
father and son of each other.

The configuration (or state) of a kinematic tree can be
represented by a vector θ of space <6m where each axis
represents a degree of freedom of a bone in the tree. Note
that each bone has six degree of freedom, three for rotation
and three for translation. Rotations are parameterized by
exponential maps.

It is customary to impose that θ belongs to a set of
valid configurations Ω usually shaped as an m-dimensional
box, i.e., to impose {θj,min 6 θj 6 θj,max} with j =
1, 2, . . . ,m .

The concept of kinematic tree describes the body skele-
ton. We model the body exterior surface (the skin) as a
deformable model Ψ which is a 3D triangular mesh where
each vertex vi, i = 1, 2, . . . , n, can freely move in space
over time maintaining smoothness. In particular, the skin
is modeled by a (linearly skinned) articulated deformable
model which is an ordered triplet (Ψ (θ) ,K (θ) ,Γ), where
Ψ (θ) is the deformable model with n vertices described
above, K (θ) is a kinematic tree with m bones and Γ =
(αi,k)i,k is a n ×m matrix where each row has sum equal
to one. Both the kinematic tree and the deformable model
depend on configuration θ, hence both the absolute matrices
of K and the vertices of Ψ depend on θ. The dependence of
K from θ is given above, while the dependence of Ψ from
θ is given by the following relationship

vi (θ) = LSKi (θ) · vi (0) (1)

where vi (θ) are the homogeneous coordinates of the i-th
vertex of Ψ at configuration θ and LSKi (θ) is the linear
skinning operator defined as

LSKi (θ) =
m∑

k=1

αi,kAMk (θ) ∗ (AMk (0))−1 (2)

Coefficients Γ = (αi,k)i,k are called the skinning parame-
ters of Ψ and describe how the mesh deforms itself accord-
ing to the underlying skeleton configuration. Configuration
0 is called base pose. Matrices {AMk (0)}k are the rigging

parameters which describes the initial pose of the kinematic
tree. Matrices {AMk (θ)}k are the motion parameters since
they include motion information affecting both skeleton and
mesh. In computer graphics, the process of searching for the
(αi,k)i,k values is called skinning and that of searching for
the {AMk (0)}k values is called rigging.

3. The Proposed Tracking Algorithm

The proposed motion tracking algorithm addresses the
estimate of the motion state θ (t) of the articulated de-
formable model, describing the human body in the scene,
given the previous motion state θ (t− 1) and the set of the
images of the body’s action taken at time t and at time t− 1
from a set of q cameras.

Our algorithm first pre-processes these images in order
to extract motion cues, then uses such information in order
to define an objective function g (θ) having its minimum at
the current motion state θ (t). In the end, it minimizes g (θ)
using as starting point for the minimization θ (t− 1).
Objective function g (θ) is first examined and next the algo-
rithm is described.

3.1. The Objective function

Given a set of z correspondences between the vertices of
the articulated deformable model and their projections on a
set of q views {V1, . . . , Vq}, let’s denote one of such corre-
spondences as (is, cs, ps), where is is the 3D mesh vertex
index, cs is the camera view index1 and ps ∈ <2 is the ac-
tual projection of vis

on the view Vcs
. Let’s denote with

PrV (·) the projection of a point in the 3D space to a 2D
point in the image space of view V , i.e.,

PrV (·) =
1

P z
V (·)

[
P x

V (·)
P y

V (·)

]
(3)

where PV (·) = (P x
V (·) , P y

V (·) , P z
V (·)) is the transforma-

tion from world space coordinates to camera space coordi-
nates of V defined as

PV (x) = RV · x+ TV (4)

where
[
RV TV

]
= KV EV and KV , EV are respec-

tively the intrinsic and the extrinsic matrix of the view V .
We say that the actual model configuration θ is the one

which minimizes the following functional

g (θ) =
z∑

s=1

∥∥PrVcs
(vis

(θ))− ps

∥∥2
(5)

1s ∈ {1, . . . , z} where z is the number of founded correspondences.
is ∈ {1, . . . , n} and cs ∈ {1, . . . , q}.
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and belongs to Ω, i.e., the set of all the allowed kinematic
configurations. Note that, vis (θ) is the same function de-
fined above in Eq. (1).

Constrained minimization of Eq. (5) can be solved by
classical gradient descent approaches with hard constraints
since the gradient of g (θ) can be easily derived in closed
form.

∂g (θ)
∂θj

= 2
z∑

s=1

(
PrVcs

(vis
(θ))− ps

)
·
∂
(
PrVcs

◦ vis

)
∂θj

(θ)

(6)
The Levenberg-Marquardt method [6], [10] was found

rather stable and reliable with respect to other methods es-
pecially when configuration θ approaches the optimal so-
lution. In this case only the closed form of the jacobian
∂
(
PrVcs

◦ vis

)
/∂θ is needed.

3.2. Motion Tracking

The use of the objective functional described in Eq. (5)
requires to extract a set of valid correspondences (is, cs, ps)
from the given images. To this aim we used two types of
motion cues, namely optical flow and silhouette informa-
tion.

Optical flow information is extracted by the KLT [8] op-
erator independently applied to each video stream. The re-
sult of this process is a large set of 2D correspondences on
consecutive frames. Let’s call (yt−1, yt) a pair of such cor-
respondences2 viewed by the camera cs. Since θ (t− 1) is
known, we can easily find which vertex of the deformable
model is projected onto image point yt−1. This can be done
by computing the z-buffer and finding the visible mesh ver-
tex with the nearest projection to yt−1. If such a vertex has
index is, then a valid correspondence for our algorithm is
(is, cs, yt).

Silhouette information is extracted and used similarly to
the ICP approach [1] with the difference that our method
does not operate in the 3D space but in the image space.
Differently than optical flow information, silhouette infor-
mation is updated also during the minimization procedure
by the following method. Assuming that we are in the pro-
cess of estimating θ (t) with our tracking algorithm, call θ̃
the estimate of configuration θ (t) at the current algorithm
iteration and call Ics

(t) the segmented image of the video
stream of camera cs at time t. For each camera cs, find all
the vertices vis of the deformable model with configuration
θ̃ which belongs to the silhouette viewed from cs. Project
such vertices on the view cs. For each projected vertex find
the closest point of the border of Ics

(t) with similar local
characteristics and call it y. Define (is, cs, y) to be a valid
correspondence. The concept of border characteristic simi-
larity is determined upon local gradient values.

2yt−1, yt ∈ <2

frames mean [%] st. dev. [%]
walk 390 8.84 0.93
pirouette & jump 490 11.74 2.24
somersault 170 11.05 4.8
hand stand 200 12.03 3.9
press up 280 11.34 1.9

Table 1. Pixel discrepancy error statistics of
the tested movements.

Outliers are pruned from the correspondences set by a
simple technique which nevertheless performs rather satis-
factorily. At each frame the average number of optical flow
correspondences is far less than the number of silhouette
ones. Typically there are about one hundred of the former
versus one thousand of the latter. Therefore, in order to
account for such proportions, the algorithm weights by a
factor of 10 the contribution of optical flow versus that of
silhouettes.

In the end, once obtained a valid set of correspondences,
the algorithm defines the function g (θ) according to Eq. (5)
and minimizes it under the constraint θ ∈ Ω using the
Levenberg-Marquardt algorithm [7].

Figure 3. The capture environment consists
of a set of four calibrated cameras arranged
in a blue fabric covered room of about 24
square meters.

4. Experimental results

The acquisition set-up consists of a set of four calibrated
cameras (Basler scA1000) arranged in a room of about 24
square meters (see Fig. 3). The cameras are synchronized
by an hardware trigger and acquire video streams with
a resolution of 1034x778 pixels at 21fps. Used optics
consist in three 4.5mm lenses and one 3.5mm lens.
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Figure 4. The pixel discrepancy error for each
frame of the walking sequence.

Figure 5. (Left) A frame of the walking se-
quence. (Right) Detail of the reconstructed
model.

Figure 6. Hand stand sequence. Upper row:
extracted silhouettes. Lower row: silhou-
ettes of the estimated 3D model.

Consequently, the average size of a human seen by each
camera is about the 5% of the entire frame resolution.
The room is covered with blue fabric in order to simplify
the silhouette extraction process. To this purpose, we
used an HLS chroma-keying technique [21]. Our human
models have been acquired by a passive 3D body scanner
and their skeleton structure has 46 degrees of freedom
arranged in 22 bones as follows: head(3), clavicles(2+2),
upper arms(3+3), forearms(1+1), hands(2+2), three
spine bones(3+3+1), pelvis(6), thighs(3+3), calves(1+1),
foots(2+2) and toes(1+1). Bones are arranged as in Fig. 2
and are constrained to be inside a box shaped set of valid
configurations Ω ⊂ <6×22.

We evaluated our algorithm on several video sequences
with different types of motion such as walking, jumping,
break-dancing, pirouettes, somersaults, hand stands and
more.

The algorithm performance was validated by both qual-
itative and quantitative evaluations. Qualitative evaluations
are based upon visual comparisons of each reconstructed
frame with the original one. Quantitative evaluations are
based on the pixel discrepancy error (PDE) between the sil-
houettes extracted from the video stream and the silhouettes
of the estimated model. We represent silhouettes (either ob-
tained by segmenting the video stream or by rendering the
reconstructed model) as binary images with the convention
that background pixels are white pixels (1) and object pix-
els are black pixels (0). At every frame, a XNOR operator is
applied between the extracted silhouette and the silhouette
of the reconstructed model. The percentage of black pixels,
with respect to the total number of pixels forming the ex-
tracted silhouette, is the pixels discrepancy error.
Table 1 reports the PDE statistics over the whole sequence
for some of the tested movements. It is worth pointing out
that, by definition, the PDE may be due to actual pose esti-
mation errors but also to background subtraction error and
to mismatches between the actual 3D shape of the human
and the used 3D model. Therefore the values in Table 1
generally overestimate the actual pose estimation error es-
pecially in sequences like the somersault and the pirouette
where fast movements and ground interaction make the sil-
houette extraction rather critical. Furthermore let’s note that
our actors wear casual clothes and have long hair. This in-
creases the mismatches between the actual 3D shape and the
used 3D model indeed, for instance, it is very difficult to tie
their hair in the same way as during the 3D scanning pro-
cess. All the above factors contribute to increase the PDE
but this is not necessary related to an actual increase of the
pose estimation error.

For instance, in order to exemplify the visual meaning
of the PDE consider the case of frame 63 of the somersault
sequence shown in Fig. 7 (row 2, column 2). It has a PDE of
10.2% which in spite of its considerable value has a visual
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Figure 7. Some frames of the somersault sequence. From top to bottom: real images acquired from
one of the cameras of the acquisition system, pixel discrepancy error, reconstructed model and the
reconstructed skeleton.
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impact rather contained.
In case of simple sequences like the walk (390 frames),

where the actor performs a walk around the room and rises
one of his legs rotating it, the algorithm can reconstruct it
rather accurately both in terms of discrepancy error and in
terms of visual quality. Indeed, as shown in Figure 4, the
PDE is rather low around its average (8.84%). Figure 5
shows a reconstructed frame of the walk sequence where
also small details, such as the right foot articulation, are
accurately reproduced.

Fast movements pose a twofold problem. Indeed, in this
case the implicit assumption of the tracking algorithm that
θ(t − 1) is a good starting point for the minimization does
not hold anymore. Furthermore fast movements cause mo-
tion blur, because of the finite aperture time of the cameras,
which deteriorates the quality of silhouette information typ-
ically altering the real object dimensions. These artifacts
are clearly shown in the upper row of Figure 6 where the
actor leg, during an hand stand, becomes smaller and some
parts disappear. However, optical flow information in these
situations effectively overcomes such problems since the vi-
sual quality of the reconstruction remains remarkably good,
as shown in the lower row of Figure 6.

The reconstruction power of the proposed method can
be appreciated by the somersault sequence which combines
fast movements, spine bending and clavicles rotations and a
lot of self occlusion given by the fact that actor bends it self
on the ground.

Figure 7 shows some frames of such a sequence. The
first rows represents the original video recorded by one of
the cameras of the acquisition system. The third row shows
the reconstructed actor while the second one shows the PDE
between the reconstructed silhouette and the silhouette of
the estimated 3D model. In particular, the black values rep-
resent the discrepancy errors while both white and light grey
values represent agreement between reconstructed and ob-
served data. In particular, a light grey value means that the
the reconstructed and observed data are both black while a
white value that they are both white. Finally, the forth row
represents the moving skeleton.

It is worth noting that thanks to the SSD model the back
of the actor is perfectly tracked. Indeed the reconstructed
silhouette lies exactly on the real one. Furthermore, this
sequence could not be successfully processed without opti-
cal flow information since, in force of the fact that the ac-
tor bends himself on the ground, a number of bones are not
part of any silhouette in any view. optical flow indeed, over-
comes the intrinsic limitation of silhouette cues that is, the
fact that they supply information only about the body parts
which belong to a silhouette.

In this sequence, hands are not correctly tracked, e.g. see
frames 83, 106, 115 and 126. This is simply due to the
fact that the used human model does not have an accurate

description of the shape of its hands and its skeleton does
not contain finger bones. Therefore it cannot model widely
opened hands such as in frames 83, 106, 115 and 126.

The current implementation of the algorithm is not time
optimized. Its running time for processing a single frame
depends on the actor’s movement speed, i.e., how far the
actual solution is from its initial guess. Typical running time
on a single core 3.4Ghz Intel P4 with 2Gb of RAM is up to
30 seconds per frame.

In light of the limited number of cameras and the un-
avoidable occlusions the obtained reconstruction is rather
satisfactory.

5. Conclusions

This paper addresses the marker-less motion tracking of
the whole human body by a new method which uses an a
priori known skinned mesh model and deals with only 2D
motion cues. An interesting contribution of this work is
a new objective function which considers in a unified way
both optical flow and silhouette information and it accounts
for the non-rigid deformations of the body skin, within the
SSD framework.

Experimental evidence shows that the proposed tech-
nique can satisfactorily track complex human movements
with a large number of occlusions in a real four cameras
environment with models of 46 degrees of freedom. Tests
proved that the use of an SSD-based model in the minimiza-
tion gives the capability of correctly estimating also small
body parts, such as clavicles and spinal bones, whose defor-
mations are hard to approximate by rigid sub-elements.

Tests concerning fast human movement, producing im-
ages with a lot of motion blur, proved the usefulness of the
optical flow cues for a correct motion estimation.

Further work will be devoted to increase the robustness
of the proposed method by integrating in it a prediction step
based on extended Kalman filtering [20]. This will bring
to a more accurate starting point for θ (t) avoiding possi-
ble problems related to movements faster than the current
frame rate. A further important improvement could be given
by the use of the stochastic meta descent algorithm (SMD)
[2] in place of the Levenberg-Marquardt method in order to
increase the the algorithmic robustness against outliers. Fi-
nally, we plan to verify the performance of the method with
a lower (3 or 2) number of cameras.
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