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Abstract

Recent efforts attempt to combine together information of
different passive methods. Critical issues in this research
are the choice of data and how to combine such data in or-
der to increase the overall information. The combination of
stereo matching and silhouette information has recently re-
ceived considerable attention both for obtaining high qual-
ity 3D models and for modelling 3D dynamic scenes. In this
paper we present a 3D shape recovery system which fuse
together silhouette, texture and shadow information. More
precisely, we formulate the fusion problem of these three
types of information. Experimental verification shows that
the new method is capable to reconstruct a wider range of
objects.

1. Introduction
The methods for recovering the 3D geometry of objects can
be classified in various ways. A typical classification distin-
guishes passive from active methods. Passive sensing refers
to the measurement of visible radiation which is already
present in the scene; active sensing refers instead to the pro-
jection of structured light patterns onto the object or scene
to be scanned. Active sensing is not always feasible, e.g.,
for modeling distant or fast-moving objects. On the other
hand, passive techniques essentially require standard image
capture devices such as photo-cameras or video-cameras.
For these reasons, the interest towards passive 3D recon-
struction techniques is bound to remain rather high. His-
torical passive sensing methods are stereo vision, structure
from motion, shape from silhouette, shape from shading,
space carving, shape from defocus and shadow carving.

Recent efforts attempt to combine information from dif-
ferent passive methods. Those methods, called multimodal,
have two main properties: the robustness to measurement
errors and the capability of reconstructing a wide range of
objects. Critical issues in this research are what type of
data to use and how to combine them, in order to actu-

ally increase the overall amount of information. The com-
bination of stereo matching and silhouette information has
recently received considerable attention both for obtaining
high quality 3D models [1] and for modelling 3D dynamic
scenes [2], an application often referred to as 3D video.

Our purpose is to use shadow information as well as sil-
houette and stereo, in the 3D recovery process. Shadow
information is the same used by shadow carving method
described in [3]. In other words, we detect all the regions of
an object that are not illuminated by a light source and then
we use such information in the surface estimation process.

In this paper we present a 3D shape recovery system
which fuses together silhouette, texture and shadow infor-
mation. More precisely, we formulate the fusion problem
of these three types of information starting from the results
obtained in our previous work [4]. Finally, we present some
experimental results and advantages of the use of shadow
information in the reconstruction process.

This paper has four sections. Sections 2 formulates the
problem within classical deformable models framework,
defines a new functional related to shadow information and
proves its theoretical advantages. Section 3 presents some
experimental results. Section 4 draws the conclusions.

2. The proposed method

The proposed 3D passive shape recovery procedure com-
bines silhouette, stereo and shadow information as schemat-
ically shown in Fig.1. The first step of this pipeline has the
purpose of extracting information from images and analyze
them using known monomodal methods like shape-from-
silhouette (SFS), stereo-matching and shadow detection al-
gorithms. Afterwards, the second part fuses together all
these kinds of information obtaining the final reconstructed
surface. In order to carry out this last step, we need to for-
mulate a fusion problem for these three types of informa-
tion.
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2.1. Information extraction

Given a set of calibrated images of the object taken from
different positions, one can extract its silhouettes by using a
segmentation algorithm [5] [6].

Shadow information extraction, on the contrary, is not a
trivial task as we cannot easily discriminate whether a sur-
face point is a shadow or not. This is hard to determine
since it is difficult to distinguish between a low reflectance
point, i.e. a dark color point, and a point in a shadow re-
gion. Indeed, absence of light from a particular direction
can be due to low reflectance as well as to insufficient illu-
mination. Besides, insufficient illumination may be due to
light sources too far from the object as well as to an actual
shadow region. In the latter case one must ensure that the
shadow is generated by the object itself and not by other
objects in the scene.

In [3], Savarese et al. propose a conservative shadow de-
tection method, i.e., a technique which classifies a point as
shadow only when it is certain that it is a shadow. The in-
verse condition is not required so that there can be shadow
points classified as non-shadow points. Obviously, the more
shadow points are detected the more accurate is the recon-
struction result. One must first set a threshold which sepa-
rates light points from dark points. Afterwards, a point P
of the object surface is classified as “shadow detectable”
if and only if there exists at least one picture where it ap-
pears lighter than the threshold, otherwise it is classified
as “shadow undetectable”. This provision ensures that the
point is not a low reflectance point but it excludes all the
points which are never lighted by the actual light sources.
For every image, a point is a shadow point if and only if it
is “shadow detectable” and it is darker than the threshold.

Silhouettes are first used by a SFS method [7] [8] [9] in
order to obtain a coarse estimate of the surface. The main
advantages of these methods are that the obtained objects
are well shaped and there are no problems with reflecting
objects or objects without texture (if the segmentation al-
gorithm is robust). The major drawback is that concavities
cannot be modelled.

Textures are used by stereo matching methods [10], [11]
which, differently from silhouette based techniques, can
model concavities. Stereo-matching does not work in re-
gions without significant texture or where the available tex-
ture exhibits some periodicity. The latter problem can be
partially avoided using a pyramidal approach [12] or other
methods which use a-priori information about surface con-
tinuity (see [13]). Silhouette information can then be used
to correct possible stereo-matching errors.

3D stereo data near the silhouette edge are usually miss-
ing, since in these regions the object points can be easily
mismatched with the background. Luckily, shape-from-
silhouette methods can model these regions rather well.

Figure 1: The proposed passive 3D modeling pipeline.

2.2. Problem formulation
Stereo matching algorithm provides us with a set, call it Σ,
of n points lying on the real surface Λ. Besides, from cal-
ibration we know a set of m views Vj , i.e., functions map-
ping <3 in <2 through a projective transformation associ-
ated to each camera that took photo of the object. Further-
more, from SFS method we have the projection Pj = Vj(Λ)
of the original surface Λ in each view Vj , i.e., the set of
points representing the silhouettes of Λ viewed from each
point of view Vj . Finally, we have a set of triads (O, L, Vj)k
where O ⊂ <2 is the set of image points representing
the shadow regions detected in the picture taken from the
point of view Vj with only one omnidirectional light source
placed in L ∈ <3.

The problem of fusing silhouettes, stereo and shadow
information concerns the estimate Λ of the real surface Λ
from extracted information Σ, {Pj} and

{
(O,L, Vj)k

}
.

More precisely, we formulate our problem as an optimiza-
tion problem within the domain of two-manifolds in <3. In
other words, the estimated model Λ will be the minimum
point of a functional ξ defined as:

ξ (s) =
∫

s

kint ·ξint+ktex ·dΣ+ksil ·ξsil+kshad ·ξshadds

(1)
where s is a two-manifold and kint, ktex, ksil, kshad are
constants a-priori fixed. The basic idea under this formu-
lation is to penalize surfaces which have points, silhouettes
and shadows inconsistent with the ones extracted form the
real surface Λ in the previous step. Thus, minimizing Eq.(1)
is equivalent to finding the manifold that interpolates stereo,
silhouette and shadow data keeping a sort of smoothness
over the entire surface in the way specified by ξint. More-
over dΣ, ξsil and ξshad are the functionals that penalize dis-
crepancies with stereo, silhouette and shadow information,
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respectively.
As in [14], ξint is set equal to the mean curvature κ of

s, while, dΣ : <3 → < is defined as the distance between a
point P on s and the point cloud Σ, as follows:

dΣ (P ) = min {d (P, x) | ∀x ∈ Σ} (2)

Moreover, as in our previous work [4], we define ξsil,
i.e., the silhouette functional, as follows:

ξsil = Sc (Vc (P )) (3)

where Vc (P ) is the projection of P onto the image plane
of view Vc, c = arg minj d (Vj (P ) ∂Pj) and d (v, ∂Pj) is
the signed distance between v and ∂Pj , which is positive if
v ∈ Pj or else negative; for additional details refer to [4].
We can prove that ξsil is zero all over the surface s iff all
the silhouettes of s are equal to the respective silhouettes of
Λ.

Finally, ξshad : <3 → < is defined as follows

ξshad (P ) = dΓ (P ) (4)

where dΓ (P ) is the distance between a point P on s and the
surface Γ, obtained by applying shadow carving algorithm
[15] to the surface s. Hence, Eq.(4) is zero all over the
surface s iff s is equal to its shadow-carved surface, in other
words, when it is consistent with shadow information.

Unfortunately, functional ξ (s) presents several local
minima points which will become a problem when we try
to solve Eq.(1) numerically. In [16], Xu and Prince analyze
local minima of dΣ that arise when the surface s reaches a
boundary concavity of Σ.

Differently from SFS and shadow-carving approaches,
this problem formulation is not conservative, i.e., it doesn’t
solve for an upper bound of Λ. Therefore, concavities of Λ
can be deeper than the shadow-carving estimation and than
the real surface Λ. This is due to the functional ξint which,
in order to maintain smoothness, eliminates surface corners.

A limitation of formulation (1) is due to the nature of
self-shadow information. Indeed, there is a strong relation-
ship between a shadowed region Φ and the portion of the
surface Ψ that obscures it from the light source. In other
words, if the estimation of the latter is incorrect then we
obtain a bad estimate of the former. A typical error prone
situation is depicted in Fig.2. Fortunately, Ψ, i.e. the por-
tion of the surface that generates the shadowed region, is in
general not shadowed except in case of double concavities.
Therefore, the estimation of Φ can be done precisely using
stereo and silhouette information.

A solution of Eq.(1) can be found by first computing
the Euler-Lagrange equations for ξ (s) and then by solving
them through a gradient descent method. Obviously, the
opposite of the gradient represents the forces deforming the
surface (as described in [14] and [17]). Namely, a surface

L

P

V j

Figure 2: Typical error prone situation: L is the light source;
the bold line indicates the shadow region; P is the portion
of the surface that generates the shadow. If the estimation of
P is incorrect (dotted line) then we obtain a bad estimation
of the concavity.

is made to evolve subject to four types of forces, an internal
and tree external ones. The first one, Fint, keeps the sur-
face as smooth as possible, while the others, Ftex, Fsil and
Fshad, make it to converge to Λ. Formally, the evolution of
the model at point P can be described as:

s (0) = s0 (5)
∂s

∂t
(t) = Fint + Ftex + Fsil + Fshad (6)

where s (t) is the estimate of Λ at iteration t and s0 is the es-
timate obtained through the shape-from-silhouette method.

Ftex deforms the model in order to minimize its distance
from the point cloud Σ. Fsil deforms the model in order
to make it consistent with silhouette information, i.e., Fsil

tends to make the model silhouettes as similar as possible to
the acquired ones. Finally, Fshad does the same for shadow
information.

The force derived from ξint [18] is independent from the
chosen parameterization of the surface s. In a numerical
framework, s is treated as a 3d-mesh so that, we work on
a specific parameterization of s. Consequently, we need an
internal force that also regularizes the parameterization of
the surface. For this reason, [17] proposes an internal force
defined as follows

Fint (P, s) = ∇2s (P )−∇4s (P ) (7)

Unfortunately, as described in [4], these forces produce
low-quality final models. Therefore, as described and jus-
tified in the same article, we will use a mixture of (7) and
[18] for Fint.

As mentioned above and as suggested by H. Esteban in
[1], we use Gradient Vector Flow (GVF) [16] as Ftex in
order to avoid local minima. Details about silhouette force
were presented in our previous work [4].
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As concerns Fshad, we take a similar approach as the
use used for carving method. We know that a point p on
s is inconsistent with shadow information intrinsic in the
triad (O, L, Vj) iff p is visible from the projection center
of Vj , p ∈ O and p is visible from L. In other words, p
is inconsistent when it belongs to a shadowed region of the
picture taken from the view Vj but it is illuminated by L.
Therefore, we define Fshad as follows

Fshad (P ) = −i (P ) · n (P ) (8)

where n (P ) is the outer normal to the surface in P . i (P )
is a scalar function which is equal to 1 iff there exists a triad
(O,L, Vj) such that P is inconsistent with it, 0 otherwise.
Therefore, a shadow force is applied to all those points
which are inconsistent with shadow information, pushing
them inside the surface with intensity equal to kshad. Thus,
Fshad tends to eliminate shadow inconsistencies and, con-
sequently, to minimize ξshad.

3. Experimental results
3.1. Reconstruction error and mesh quality
Reconstruction error can be evaluated if the measures of the
original surface Λ are available. In this case, one of the pos-
sible metrics could be the measure of the volume difference
between Λ and Λ. More precisely, let S and S be three-
manifolds, i.e., solids, such that their boundary ∂S and ∂S
are equal to Λ and Λ respectively, then

ε =
V olume

((
S\S

)
∪

(
S\S

))
V olume (S)

(9)

could be use as an evaluation of the reconstruction error.
Moreover, one can evaluate the distances between the

two surfaces as follows

d (p, Λ) ,∀p ∈ Λ (10)

where d (p, Λ) is, obviously, the distance between p and
Λ. It is convenient to make a statistics of these distances
evaluating mean, standard deviation and maximum value
(daverage, σd and dmax respectively).

Besides, in order to evaluate the quality of the obtained
3D mesh the quality parameters introduced in [19] can be
very useful. Qequ is the index of parametric regularity of a
mesh face f

Qequ (f) =
6√
3

A

s · h
∈ [0, 1] (11)

where A is the area of the face, s the semi perimeter and
h the length of the longest edge. Qequ is a value between
0 and 1, where 1 corresponds to a equilateral triangle and
thus to maximal regularity. Another quality index is Qplan,

Figure 3: Arrangement of the cameras all around the syn-
thetic model.

which refers to the geometrical description of the mesh.
Qplan is defined as:

Qplan =
n · n1 + n · n2 + n · n3

3
∈ [0, 1] (12)

where n is the normal to the face and n1, n2, n3 are the
normals of the triangles which are adjacent to the three face
edges. A good mesh must describe high curvature regions
with a high sampling rate. Qplan could be increased by
sampling the mesh at high rate, but this would generate
huge size models without enhancing the level of detail of
low curvature regions. A sampling rate proportional to lo-
cal curvature is therefore advisable.

3.2. Tests
The algorithm behavior, when only silhouette and stereo in-
formation is available, was tested and results were presented
in our previous work [4]. Instead, in order to evaluate the
capability to use shadow information in the reconstruction
process, we performed tests on synthetic models. This is
the only way of knowing exactly the original surface Λ, thus
being able to evaluate reconstruction error. Pictures of the
synthetic models were generated by a rendering software
using n 43mm target cameras arranged in a circle centered
on the object center, like in Fig.3. Lights in the scene are all
omnidirectional and their shadow are generated using area
shadow method which is more similar to reality than a sim-
ple ray-tracing method. In this way, we introduce an error
in the determination of the shadow area which will be de-
tected using the threshold mentioned above. The rendering
was supervisioned by a script which also calculated the rel-
ative projection matrices.

Although the first model in Fig.4 seems very simple, it
represents the typical object reconstructible only fusing to-
gether shadow, stereo and silhouette information. Indeed,
its outer sides present a good texture quality which cover
the incapability of the silhouette-based methods to precisely
describe its geometry without using a large number of im-
ages of Λ. These methods indeed, does not behave correctly
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Figure 4: Synthetic models used to evaluate our system.
Above: the cube. Below: a marble tunic

in case of sharp cornered objects because their silhouettes
produce a lot of redundant information. Using stereo infor-
mation instead, we need only eight images to reconstruct
the outer sides.

Inner sides of the concavity does not have any textures
so neither stereo nor silhouette can describe this area. How-
ever, we have eleven photos of the concavity taken from
the same point of view with different illuminations. More
precisely, we have disposed eleven light sources which are
switched on one at a time. Triads (O,L, Vj) are then ex-
tracted using shadow detection algorithm and finally passed
to the fusion algorithm obtaining the result in Fig.5.

Cube size is 40x40x40 units and the cameras are 200
units away from the center of the object. Image resolution is
1024x768 pixels. Excluding the bottom region of the cube
which is not visible by the camera, reconstruction error is
equal to ε = 0.57% which means that we have a discrep-
ancy of 0.57% of the original volume. dmax is equal to
2.14 units (3% of the diameter of the object) while daverage

is equal to 0.41 units (1% of the diameter) with standard
deviation 0.30.

As we can see in Fig.6, compared with shadow carving
algorithm, our method produces a model that presents a bet-
ter parametric quality and a better geometric quality. More
precisely, Qequ and Qplan are equal to 0.84 and 0.995 re-

Figure 5: Left: Reconstruction of the synthetic model of
Fig.4above. Right: Comparison with the original one (Λ is
in grey).

spectively.

4. Conclusions
This paper presents a new 3D passive multimodal digiti-
zation scheme which fuses together silhouette, texture and
shadow information. As proved by tests, the proposed sys-
tem presents both properties that mark a multimodal tech-
nique. Indeed, it can be proved to be resilient to measure-
ment errors and capable of reconstructing a wide range of
objects such as those featuring:

• Surfaces characterized by good quality texture, suffi-
cient lighting and not too high a specular reflectance
(we recall that stereo-based methods completely fail
to acquire object even with minimal specular re-
flectance);

• Specular surfaces or surfaces without texture or with a
periodical texture, provided that some pictures image
the profile of such surfaces (information in this case
comes from the silhouettes);

• Concavities characterized by good texture and suffi-
cient lighting.

• Concavities characterized by high reflectance and ab-
sence of lighting (information comes from the shadow
regions).

The proposed method still doesn’t allow the reconstruc-
tion of reflecting or transparent regions, nor the modelling
of objects not exhibiting the above mentioned features.

Furthermore, reconstruction error is rather satisfactory.
For instance, using centimeters we have that the cube re-
constructed from pictures 1024x768 taken from 2 meter dis-
tance with 43mm cameras is affected by an average error of
4 millimeters. Such an error can be remarkably reduced us-
ing digital cameras of higher resolution.
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Figure 6: Model quality histogram comparison between the
one obtained using shadow carving method S and the one
obtained with our method R. From top to bottom: Qequ of
S, Qequ of R, Qplan of S and Qplan of R.

Moreover, the use of shadow information enlarges the
range of reconstructible objects. Indeed, shadow informa-
tion compensates for the lack of texture and silhouette in-
formation in the case of dark regions. Besides, differently
from shadow carving algorithms, our method gives better
results with respect to geometric and parametric quality.
Other benefits of our system are inherited from our previ-
ous work [4].

Further research will concern the combination of shape
from shading method together with silhouettes, stereo and
shadow.
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